Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/bip/8/1/10.1186/1559-4106-8-10
1.
1.S Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, J Biomed Mater Res 62, 600 (2002).
http://dx.doi.org/10.1002/jbm.10280
2.
2.RZ LeGeros, Hydroxyapatite and related materials (CRC Press, Boca Raton, 1979).
3.
3.T Noro and K Itoh, Biomechanical behaviour of hydroxyapatite as bone substitute material in a loaded implant model. On the surface strain measurement and the maximum compression strength determination of material crash, Biomed Mater Eng 9, 319 (1999).
4.
4.E Ebaretonbofa and JRG Evans, Porosity hydroxyapatite foam scaffolds for bone substitute, J Porous Mater 9, 257 (2002).
http://dx.doi.org/10.1023/A:1021696711468
5.
5.Y Liu, T Wang, F He, Q Liu, D Zhang, S Ziang, S Su and J Zhang, An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery, Int J Nanomed 6, 721 (2011).
http://dx.doi.org/10.2147/IJN.S17096
6.
6.D Olton, J Li, ME Wilson, T Rogers, J Close, L Huang, PN Kumta and C Sfeir, Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency, Biomaterials 28, 1267 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2006.10.026
7.
7.VV Sokolova, I Radtke, R Heumann and M Epple, Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles, Biomaterials 27, 3147 (2006).
http://dx.doi.org/10.1016/j.biomaterials.2005.12.030
8.
8.JAM Van Der Houwen and E Valsami-Jones, The application of calcium phosphate precipitation chemistry to phosphorus recovery: The influence of organic gigands, Environ Technol 22, 1325 (2001).
http://dx.doi.org/10.1080/09593332108618187
9.
9.LJ Cummings, MA Snyder and K Brisack, Protein chromatography on hydroxyapatite columns, Methods Enzymol 463, 387 (2009).
http://dx.doi.org/10.1016/S0076-6879(09)63024-X
10.
10.C Andrews-Pfannkoch, DW Fadrosh, J Thorpe and SJ Williamson, Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages, Appl Environ Microbiol 76, 5039 (2010).
http://dx.doi.org/10.1128/AEM.00204-10
11.
11.X Cao, W Deng, Y Wei, W Su, Y Yang, Y Wei, J Yu and X Xu, Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency, Int J Nanomed 6, 3335 (2011).
12.
12.T Liu, A Tang, G Zhang, Y Chen, J Zhang, S Peng and Z Cai, Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy, Cancer Biother Radiopharm 20, 141 (2005).
http://dx.doi.org/10.1089/cbr.2005.20.141
13.
13.Y Kakizawa, K Miyata, S Furukawa and K Kataoka, Size-controlled formation of a calcium phosphate-based organic–inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid), Adv Mater 16, 699 (2004).
http://dx.doi.org/10.1002/adma.200305782
14.
14.M Urabe, A Kume, K Tobita and K Ozawa, DNA/Calcium phosphate precipitates mixed with medium are stable and maintain high transfection efficiency, Anal Biochem 278, 91 (2000).
http://dx.doi.org/10.1006/abio.1999.4429
15.
15.V Sololova, I Radtke, R Heumann and M Eppi, Nano-sized calcium phosphate (CaP) carriers for non-viral gene deilvery, Mater Sci Engin B 177, 289 (2012).
http://dx.doi.org/10.1016/j.mseb.2011.11.001
16.
16.G-J Wu, L-Z Zhou, K-W Wang, F Cheng, Y Sun, Y-R Duan, Y-J Zhu and H-C Gu, Hydroxylapatite nanorods: An efficient and promising carrier for gene transfection, J Collod Interf Sci 345, 427 (2010).
http://dx.doi.org/10.1016/j.jcis.2010.01.048
17.
17.A Maitra, Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy, Expert Rev Mol Diagn 5, 893 (2005).
http://dx.doi.org/10.1586/14737159.5.6.893
18.
18.M Jordan, A Schallhorn and FM Wurm, Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation, Nucl Acids Res 24, 596 (1996).
http://dx.doi.org/10.1093/nar/24.4.596
19.
19.M Jordan and F Wurm, Transfection of adherent and suspended cells by calcium phosphate, Methods 33, 136 (2004).
http://dx.doi.org/10.1016/j.ymeth.2003.11.011
20.
20.V Sokolova, A Kovtun, O Prymak, W Meyer-Zaika, EA Kubareva, EA Romanova, TS Oretskaya, R Heumann and M Epple, Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing, J Mater Chem 17, 721 (2007).
http://dx.doi.org/10.1039/b612699e
21.
21.EY Kostetsky, The possibility of the formation of protocells and their structural components on the basis of the apatite matrix and cocrystallizing minerals, J Biol Phys 31, 607 (2005).
http://dx.doi.org/10.1007/s10867-005-2383-x
22.
22.CI Simionescu, S Dumitriu, V Bulacovski and VI Popa, Synthesis of saccharides by cold plasma decomposition in methane-water-apatite system, Cellulose Chem Technol 12, 143 (1978).
23.
23.CI Simionesku and F Denes, Origin of life. The chemical theories (Mir, Moskow, 1986).
24.
24.AW Schwartz, The possibility of the formation of protocells and their structural components on the basis of the apatite matrix and cocrystallizing minerals, Biochim Biophys Acta 281, 477 (1972).
http://dx.doi.org/10.1016/0005-2787(72)90147-5
25.
25.EY Kostetsky, On the origin of life and the possibility of the development of protocells and their structural elements in apatite crystals, J Evol Biochim Physiol 35, 249 (1999).
26.
26.SC Ngourn, HA Butts, AR Petty, JE Anderson and AE Gerdon, Quartz crystal microbalance analysis of DNA-templated calcium phosphate mineralization, Langmuir 28, 12151 (2012).
http://dx.doi.org/10.1021/la300949y
27.
27.JC Wang, Helical repeat of DNA in solution, Proc Natl Acad Sci 76, 200 (1979).
http://dx.doi.org/10.1073/pnas.76.1.200
28.
28.JM Hiughes, M Cameron and KD Corwley, Structural variations in natural F, OH, and Cl apatites, Am Mineral 74, 870 (1989).
29.
29.K Grzeskowiak, DS Goodsell, M Kaczor-Grzeskowiak, D Cascio and RE Dickerson, Crystallographic analysis of C-C-A-A-G-C-T-T-G-G and its implications for bending in B-DNA, Biochemistry 32, 8923 (1993).
http://dx.doi.org/10.1021/bi00085a025
30.
30.J Bang, S-H Bae, C-J Park, J-H Lee and B-S Choi, Structural and dynamics study of DNA dodecamer duplexes that contain un-, hemi-, or fully methylated GATC sites, J Am Chem Soc 130, 17688 (2008).
http://dx.doi.org/10.1021/ja8038272
31.
31.KB Geahigan, GA Meints, ME Hatcher, J Orban and GP Drobny, The dynamic impact of CpG methylation in DNA, Biochemistry 39, 4939 (2000).
http://dx.doi.org/10.1021/bi9917636
32.
32.SH Bae, HK Cheong, C Cheong, S Kang, DS Hwang and BS Choi, Structure and dynamics of hemimethylated GATC sites: implications for DNA-SeqA recognition, J Biol Chem 278, 45987 (2003).
http://dx.doi.org/10.1074/jbc.M306038200
33.
33.DA Case, TA Darden, TE Cheatham III, CL Simmerling, J Wang, RE Duke, R Luo, RC Walker, W Zhang, KM Merz, B Roberts, S Hayik, A Roitberg, G Seabra, J Swails, AW Götz, I Kolossváry, KF Wong, F Paesani, J Vanicek, RM Wolf, J Liu, X Wu, SR Brozell, T Steinbrecher, H Gohlke, Q Cai, X Ye, J Wang, M-J Hsieh, G Cui, DR Roe, DH Mathews, MG Seetin, R Salomon-Ferrer, C Sagui, V Babin, T Luchko, S Gusarov, A Kovalenko and PA Kollman, AMBER 12 (University of California, San Francisco, 2012).
34.
34.NV Hud and M Polak, DNA-cation interactions: The major and minor grooves are flexible ionophores, Curr Opin Struct Biol 11, 293 (2001).
http://dx.doi.org/10.1016/S0959-440X(00)00205-0
35.
35.CC Sines, L McFail-Isom, SB Howerton, D Van Derveer and LD Williams, Cations mediate B-DNA conformational heterogeneity, J Am Chem Soc 122, 11048 (2000).
http://dx.doi.org/10.1021/ja002244p
36.
36.TK Chiu and RE Dickerson, A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium, J Mol Biol 301, 915 (2000).
http://dx.doi.org/10.1006/jmbi.2000.4012
37.
37.RY Zhang and PX Ma, Biomimetic polymer/apatite composite scaffolds for mineralized tissue engineering, Macromol Biosci 4, 100 (2004).
http://dx.doi.org/10.1002/mabi.200300017
38.
38.N Almora-Barrios and NH De Leeuw, Molecular dynamics simulation of the early stages of nucleation of hydroxyapatite at a collagen template, Cryst Growth Des 12, 756 (2012).
http://dx.doi.org/10.1021/cg201092s
39.
39.JC Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot, RD Skeel, L Kale and K Schulten, Scalable molecular dynamics with NAMD, J Comput Chem 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
40.
40.WD Cornell, P Cieplak, CI Bayly, IR Gould, KM Merz, DM Ferguson, DC Spellmeyer, T Fox, JW Caldwell and PA Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, J Am Chem Soc 117, 5179 (1995).
http://dx.doi.org/10.1021/ja00124a002
41.
41.Y Duan, S Chowdhury, MC Lee, G Xiong, W Zhang, R Yang, P Cieplak, R Luo, T Lee, J Caldwell, J Wang and PA Kollman, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, J Comput Chem 24, 1999 (2003).
http://dx.doi.org/10.1002/jcc.10349
42.
42.J Wang, P Cieplak and PA Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, J Comput Chem 21, 1049 (2000).
http://dx.doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
43.
43.V Hornak, R Abel, A Okur, B Strockbine, A Roitberg and C Simmerling, Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins 65, 712 (2006).
http://dx.doi.org/10.1002/prot.21123
44.
44.GM Bradbrook, T Gleichmann, SJ Harrop, J Habash, J Raftery, J Kalb, J Yariv, IH Hillier and JR Helliwell, X-Ray and molecular dynamics studies of concanavalin-A glucoside and mannoside complexes Relating structure to thermodynamics of binding, J Chem Soc Faraday Trans 1998, 94,1603 (1998).
45.
45.LX Dang, Development of nonadditive intermolecular potentials using molecular dynamics: solvation of Li+ and F ions in polarizable water, J Chem Phys 96, 6970 (1992).
http://dx.doi.org/10.1063/1.462555
46.
46.AD Becke, A new mixing of Hartree–Fock and local density-functional theories, J Chem Phys 98, 1372 (1993).
http://dx.doi.org/10.1063/1.464304
47.
47.C Lee, W Yang and RG Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the density, Phys Rev B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
48.
48.PC Hariharan and JA Pople, The effect of d-functions on molecular orbital energies for hydrocarbons, Chem Phys Lett 16, 217 (1972).
http://dx.doi.org/10.1016/0009-2614(72)80259-8
49.
49.SF Boys and F Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol Phys 19, 553 (1970).
http://dx.doi.org/10.1080/00268977000101561
50.
50.MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G Scalmani, V Barone, B Mennucci, GA Petersson, H Nakatsuji, M Caricato, X Li, HP Hratchian, AF Izmaylov, J Bloino, G Zheng, JL Sonnenberg, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, T Vreven and JA Montgomery Jr, Gaussian 09, revision A.01 (Gaussian, Inc, Wallingford, CT, 2009).
51.
51.WL Jorgensen, J Chandrasekhar, JD Madura, RW Impey and ML Klein, Comparison of simple potential functions for simulating liquid water, J Chem Phys 79, 926 (1983).
http://dx.doi.org/10.1063/1.445869
52.
52.T Darden, D York and L Pedersen, Particle Mesh Ewald-an N.Log(N) method for Ewald sums in large systems, J Chem Phys 98, 10089 (1993).
http://dx.doi.org/10.1063/1.464397
53.
53.HJC Berendsen, JPM Postma, WF van Gunsteren, A DiNola and JR Haak, Molecular dynamics with coupling to an external bath, J Chem Phys 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
54.
54.JP Ryckaert, G Ciccotti and HJC Berendsen, Numerical integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, J Comput Phys 23, 327 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
55.
55.BJ Tarasevich, CJ Howard, JL Larson, ML Snead, JP Simmer, M Paine and WJ Shaw, The nucleation and growth of calcium phosphate by amelogenin, J Cryst Growth 304, 407 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2007.02.035
56.
56.M Motskin, KH Müller, C Genoud, AG Monteith and JN Skepper, The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment, Biomaterials 32, 9470 (2011).
http://dx.doi.org/10.1016/j.biomaterials.2011.08.060
http://aip.metastore.ingenta.com/content/avs/journal/bip/8/1/10.1186/1559-4106-8-10
Loading
/content/avs/journal/bip/8/1/10.1186/1559-4106-8-10
Loading

Data & Media loading...

Loading

Full text loading...

true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=avspublications.org/8/1/10.1186/1559-4106-8-10&pageURL=http://scitation.aip.org/content/avs/journal/bip/8/1/10.1186/1559-4106-8-10'
Right1,Right2,Right3,