1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating
Rent:
Rent this article for
Access full text Article
/content/avs/journal/bip/9/2/10.1116/1.4867415
1.
1. B. E. Pjetursson, D. Thoma, R. Jung, M. Zwahlen, and A. Zembic, Clin. Oral Implants Res. 23, 22 (2012).
http://dx.doi.org/10.1111/j.1600-0501.2012.02546.x
2.
2. P. Papaspyridakos, C. J. Chen, S. K. Chuang, H. P. Weber, and G. O. Gallucc, Int. J. Oral Maxillofac. Implants 27, 102 (2012).
3.
3. M. Quirynen and W. Teughels, Periodontology 33, 119 (2000).
http://dx.doi.org/10.1046/j.0906-6713.2003.03310.x
4.
4. D. Cecchinato, A. Parpaiola, and L. J. Lindhe, “Mucosal inflammation and incidence of crestal bone loss among implant patients: a 10-year study,” Clin. Oral Implants Res. (published online).
http://dx.doi.org/10.1111/clr.12209
5.
5. K. Länge, M. Herold, L. Scheideler, J. Geis-Gerstorfer, H. P. Wende, and G. Gauglitz, Dent. Mater. 20, 814 (2004).
http://dx.doi.org/10.1016/j.dental.2003.10.010
6.
6. K. Subramani, R. E. Jung, A. Molenberg, and C. H. F. Hämmerle, Int. J. Oral Maxillofac. Implants 24, 616 (2009).
7.
7. M. M. Fürst, G. E. Salvi, N. P. Lang, and G. R. Persson, Clin. Oral Implants Res. 18, 502 (2007).
http://dx.doi.org/10.1111/j.1600-0501.2007.01381.x
8.
8. S. C. Holt, L. Kesavalu, S. Walker, and C. A. Genco, Periodontology 2000 20, 168 (1999).
http://dx.doi.org/10.1111/j.1600-0757.1999.tb00162.x
9.
9. E. Andrian, D. Grenier, and M. Rouabhia, J. Dent. Res. 85, 392 (2006).
http://dx.doi.org/10.1177/154405910608500502
10.
10. W. Heuer, C. Elter, A. Demling, A. Neumann, S. Suerbaum, M. Hannig, T. Heidenblut, F. W. Bach, and M. Stiesch-Scholz, J. Oral Rehabil. 34, 377 (2007).
http://dx.doi.org/10.1111/j.1365-2842.2007.01725.x
11.
11. R. J. Lamont, A. El-Sabaeny, Y. Park, G. S. Cook, J. W. Costerton, and D. R. Demuth, Microbiology 148, 1627 (2002).
12.
12. S. Periasamy and P. E. Kolenbrander, J. Bacteriol. 191, 6804 (2009).
http://dx.doi.org/10.1128/JB.01006-09
13.
13. J. H. Brock, Biochem. Cell Biol. 90, 245 (2012).
http://dx.doi.org/10.1139/o2012-018
14.
14. C. Dipaola and I. D. Mandel, J. Dent. Res. 59, 1463 (1980).
http://dx.doi.org/10.1177/00220345800590090101
15.
15. J. D. Rudney, K. L. Hickey, and Z. Ji, J. Dent. Res. 78, 759 (1999).
http://dx.doi.org/10.1177/00220345990780030801
16.
16. D. Legrand, E. Elass, M. Carpentier, and J. Mazurier, Biochem. Cell Biol. 84, 282 (2006).
http://dx.doi.org/10.1139/o06-045
17.
17. D. Legrand and J. Mazurier, Biometals 23, 365 (2010).
http://dx.doi.org/10.1007/s10534-010-9297-1
18.
18. P. Visca, F. Berlutti, P. Vittorioso, C. Dalmastri, M. C. Thaller, and P. Valenti, Med. Microbiol. Immunol. 178, 69 (1989).
http://dx.doi.org/10.1007/BF00203302
19.
19. N. L. Danielsson, O. Hernell, and I. Johansson, Caries Res. 43, 171 (2009).
http://dx.doi.org/10.1159/000213888
20.
20. D. Yamamoto, Y. Shinohara, H. Nagadome, and Y. Terada, J. Prosthodontics Res. 53, 136 (2009).
http://dx.doi.org/10.1016/j.jpor.2009.03.002
21.
21. S. Y. Arslan, K. P. Leung, and C. D. Wu, Oral Microbiol. Immunol. 24, 411 (2009).
http://dx.doi.org/10.1111/j.1399-302X.2009.00537.x
22.
22. K. Endo, Dent. Mater. J. 14, 199 (1995).
http://dx.doi.org/10.4012/dmj.14.199
23.
23. T. Kado, T. Hidaka, H. Aita, K. Endo, and Y. Furuichi, Appl. Surf. Sci. 262, 240 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.07.091
24.
24. C. Russell and W. A. Coulter, Appl. Microbiol. 29, 141 (1975).
25.
25. B. Kasebo and J. Lausmaa, Swed. Dent. J. 28, 19 (1983).
26.
26. G. Gertler, G. Fleminger, and H. Rapaport, Langmuir 26, 6457 (2010).
http://dx.doi.org/10.1021/la903490v
27.
27. H. Jentsch, Y. Sievert, and R. Göcke, J. Clin. Periodontol. 31, 511 (2004).
http://dx.doi.org/10.1111/j.1600-051X.2004.00512.x
28.
28. A. J. M. Ligtenberg, E. Walgreen-Weterings, E. C. I. Veerman, J. J. De Soet, J. De Graaf, and A. V. N. Amerongen, Infect. Immun. 60, 3878 (1992).
29.
29. S. J. Ahn, H. S. Kho, K. K. Kim, and D. S. Nahm, Am. J. Orthod. Dent. Orthop. 124, 198 (2003).
http://dx.doi.org/10.1016/S0889-5406(03)00346-9
30.
30. D. Mothey, B. A. Buttaro, and P. J. Piggot, FEMS Microbiol. Lett. 350, 161 (2013).
http://dx.doi.org/10.1111/1574-6968.12336
31.
31. R. R. Arnold, M. F. Cole, and J. R. McGhee, Science 197, 263 (1977).
http://dx.doi.org/10.1126/science.327545
32.
32. S. Farnaud and R. W. Evans, Mol. Immunol. 40, 395 (2003).
http://dx.doi.org/10.1016/S0161-5890(03)00152-4
33.
33. A. Roseanu, P. Florian, M. Condei, D. Cristea, and M. Damian, Rom. Biotechnol. Lett. 15, 5788 (2010).
34.
34. R. T. Ellison III and T. J. Giehl, J. Clin. Invest. 88, 1080 (1991).
http://dx.doi.org/10.1172/JCI115407
35.
35. M. Tomita, M. Takase, W. Bellamy, and S. Shimamura, Acta Paediatr. Jpn. 36, 585 (1994).
http://dx.doi.org/10.1111/j.1442-200X.1994.tb03250.x
36.
36. J. L. Gifford, H. N. Hunter, and H. J. Vogel, Cell. Mol. Life Sci. 62, 2588 (2005).
http://dx.doi.org/10.1007/s00018-005-5373-z
37.
37. P. H. Nibbering, E. Ravensbergen, M. M. Welling, L. A. Van Berkel, P. H. C. Van Berkel, E. K. J. Pauwels, and J. H. Nuijens, Infect. Immun. 69, 1469 (2001).
http://dx.doi.org/10.1128/IAI.69.3.1469-1476.2001
38.
38. L. Huo, K. Zhang, J. Ling, Z. Peng, X. Huang, H. Liu, and L. Gu, Arch. Oral Biol. 56, 869 (2011).
http://dx.doi.org/10.1016/j.archoralbio.2011.02.004
39.
39. M. Yoshinari, T. Kato, K. Matsuzaka, K. Hayakawa, and T. K. Shiba, Biofouling 26, 103 (2010).
http://dx.doi.org/10.1080/08927010903216572
40.
40. E. C. Leitch and M. D. P. Willcox, J. Med. Microbiol. 48, 867 (1999).
http://dx.doi.org/10.1099/00222615-48-9-867
41.
41. M. S. Diarra, D. Petitclerc, and P. Lacasse, J. Dairy Sci. 85, 1141 (2002).
http://dx.doi.org/10.3168/jds.S0022-0302(02)74176-3
42.
42. M. S. Diarra, P. Lacasse, E. Deschenes, G. Grondin, C. Paradis-Bleau, and Denis Petitclerc, J. Electron Microsc. 52, 207 (2003).
http://dx.doi.org/10.1093/jmicro/52.2.207
43.
43. J. B. Park, M. Koh, Y. J. Jang, B. K. Choi, K. K. Kim, and Y. Ko, “Removing bacteria from rough surface titanium discs with chlorhexidine and additional brushing with dentifrice,” Gerodontology (published online).
http://dx.doi.org/10.1111/ger.12106
44.
44. S. A. Rowland, S. W. Shalaby, R. A. Latour, Jr., and A. F. von Recum, J. Appl. Biomater. 6, 1 (1995).
http://dx.doi.org/10.1002/jab.770060102
http://aip.metastore.ingenta.com/content/avs/journal/bip/9/2/10.1116/1.4867415
Loading
/content/avs/journal/bip/9/2/10.1116/1.4867415
Loading

Data & Media loading...

Abstract

Because dental implant abutments are located at transmucosal sites, their surface should inhibit bacterial accumulation to prevent peri-implantitis. The authors examined the effects of human lactoferrin (LF), an antibacterial protein present in saliva, as an antibacterial coating on the titanium surface and evaluated its effects before and after mucin-containing artificial saliva (AS) incubation. In the control group, titanium disks were soaked in distilled water, whereas in the LF group, titanium disks were soaked in LF solution to coat the disks. In the control-AS and LF-AS groups, half of the control and LF disks were incubated with AS. To confirm LF adsorption, the fluorescence intensity of fluorescein isothiocyanate-labeled LF was measured. The LF and LF-AS groups showed significantly higher intensity than the control and control-AS groups ( < 0.01). There was no significant difference between the LF and LF-AS groups ( > 0.05). The amount of adhered significantly increased by incubation with AS ( < 0.01) and significantly decreased by adsorption of LF ( < 0.01). There was no interaction between the two factors, LF adsorption and AS incubation ( = 0.561). These results suggest that the adsorbed LF inhibited bacterial adhesion following AS incubation. According to qualitative LIVE/DEAD analysis, viable bacteria appeared to be decreased in the presence of LF and SEM observation indicated that altered morphologies increased in LF and LF-AS groups. These results suggest that the adsorbed LF remained on the titanium surface after incubation with AS, and the remaining LF inhibited bacterial adhesion and exhibited bactericidal effects. Therefore, the adsorption of LF on the abutment material appears to be effective in preventing peri-implantitis.

Loading

Full text loading...

/deliver/fulltext/avs/journal/bip/9/2/1.4867415.html;jsessionid=1ohpexhns01q4.x-aip-live-06?itemId=/content/avs/journal/bip/9/2/10.1116/1.4867415&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/bip
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating
http://aip.metastore.ingenta.com/content/avs/journal/bip/9/2/10.1116/1.4867415
10.1116/1.4867415
SEARCH_EXPAND_ITEM