Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/29/3/10.1116/1.3569757
1.
1.M. I. Hoffert et al., Nature (London) 395, 881 (1998).
http://dx.doi.org/10.1038/27638
2.
2.N. S. Lewis, Mater. Res. Bull. 32, 808 (2007).
http://dx.doi.org/10.1557/mrs2007.168
3.
3.D. Mills, Sol. Energy 76, 19 (2004).
http://dx.doi.org/10.1016/S0038-092X(03)00102-6
4.
4.J. R. Bolton, Science 202, 705 (1978).
http://dx.doi.org/10.1126/science.202.4369.705
5.
5.P. V. Kamat, J. Phys. Chem. C 111, 2834 (2007).
http://dx.doi.org/10.1021/jp066952u
6.
6.T. Surek, J. Cryst. Growth 275, 292 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.10.093
7.
7.C. A. Wolden, NSF PV Workshop Summary, http://inside.mines.edu/fs_home/cwolden/PVworkshop/Report2.html, 2010.
8.
8.A. Goetzberger, C. Hebling, and H. W. Schock, Mater. Sci. Eng. R. 40, 1 (2003).
http://dx.doi.org/10.1016/S0927-796X(02)00092-X
9.
9.F. Aratani, Prog. Photovoltaics 13, 463 (2005).
http://dx.doi.org/10.1002/pip.648
10.
10.K. Bullis, Technol. Rev. 113, 52 (2010).
11.
11.S. Mehta, 2009 Global PV Cell and Module Production Analysis (GTM Research, San Francisco, CA, 2009).
12.
12.P. Mints, Analysis of Worldwide PV Markets and Five-Year Application Forecast 2009/2010 (Navigant Consulting, San Francisco, CA, 2010).
13.
13.M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics 18, 346 (2010).
http://dx.doi.org/10.1002/pip.1021
14.
14.D. S. Kim, V. Yelundur, K. Nakayashiki, B. Rounsaville, V. Meemongkolkiat, A. M. Gabor, and A. Rohatgi, Sol. Energy Mater. Sol. Cells 90, 1227 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.07.008
15.
15.EFG-Solar Cell Product Specification Sheet (Schott Solar, Albuquerque, NM, 2010).
16.
16.M. A. Green, Prog. Photovoltaics 9, 123 (2001).
http://dx.doi.org/10.1002/pip.360
17.
17.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
18.
18.G. del Coso, I. Tobias, C. Canizo, and A. Luque, J. Cryst. Growth 299, 165 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.12.004
19.
19.S. Pizzini, Sol. Energy Mater. Sol. Cells 94, 1528 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.01.016
20.
20.M. Raugei, S. Bargigli, and S. Ulgiati, Energy 32, 1310 (2007).
http://dx.doi.org/10.1016/j.energy.2006.10.003
21.
21.T. F. Ciszek, Mater. Res. Bull. 7, 731 (1972).
http://dx.doi.org/10.1016/0025-5408(72)90121-3
22.
22.T. F. Ciszek, J. L. Hurd, and M. Schietzelt, J. Electrochem. Soc. 129, 2838 (1982).
http://dx.doi.org/10.1149/1.2123689
23.
23.J. P. Kalejs, J. Cryst. Growth 230, 10 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01352-5
24.
24.A. G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00099-4
25.
25.G. P. Smestad, Optoelectronics of Solar Cells (SPIE, Bellingham, WA, 2002).
http://dx.doi.org/10.1117/3.446028
26.
26.M. Wolf in Proceedings of the 14th IEEE Photovoltaics Conference, San Diego, CA, 1980, p. 674.
27.
27.M. J. Kerr, J. Schmidt, and A. Cuevas, in Proceedings of the 29th IEEE Photovoltaics Specialists Conference, New Orleans, LA, 2002, p. 438.
28.
29.
29.A. Luque, A. Cuevas, and J. M. Ruiz, Sol. Cells 2, 151 (1980).
http://dx.doi.org/10.1016/0379-6787(80)90007-1
30.
30.K. A. Munzer, K. T. Holdermann, R. E. Schlosser, and S. Sterk, IEEE Trans. Electron Devices 46, 2055 (1999).
http://dx.doi.org/10.1109/16.791996
31.
31.V. Depauw, I. Gordon, G. Beaucarne, J. Poortmans, R. Mertens, and J. P. Celis, J. Appl. Phys. 106, 033516 (2009).
http://dx.doi.org/10.1063/1.3183942
32.
32.M. L. Terry, A. Straub, D. Inns, D. Y. Song, and A. G. Aberle, Appl. Phys. Lett. 86, 172108 (2005).
http://dx.doi.org/10.1063/1.1921352
33.
33.D. Y. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, Thin Solid Films 513, 356 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.01.010
34.
34.F. Dross, J. Robbelein, B. Vandevelde, E. Van Kerschaver, I. Gordon, G. Beaucarne, and J. Poortmans, Appl. Phys. A: Mater. Sci. Process. 89, 149 (2007).
http://dx.doi.org/10.1007/s00339-007-4195-2
35.
35.C. Podewils, in Photon International, May, 2009, p. 116.
36.
36.M. J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 35 (2002).
http://dx.doi.org/10.1088/0268-1242/17/1/306
37.
37.J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, Prog. Photovoltaics 16, 461 (2008).
http://dx.doi.org/10.1002/pip.823
38.
38.D. Shir, J. Yoon, D. Chanda, J. H. Ryu, and J. A. Rogers, Nano Lett. 10, 3041 (2010).
http://dx.doi.org/10.1021/nl101510q
39.
39.S. Pillai and M. A. Green, Sol. Energy Mater. Sol. Cells 94, 1481 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.02.046
40.
40.P. C. Rowlette and C. A. Wolden, ACS Appl. Mater. Interfaces 1, 2586 (2009).
http://dx.doi.org/10.1021/am900506y
41.
41.S. Eglash, Laser Focus World 45, 39 (2009).
42.
42.P. Engelhart et al., Prog. Photovoltaics 15, 521 (2007).
http://dx.doi.org/10.1002/pip.758
43.
43.D. A. Cusano, Solid-State Electron. 6, 217 (1963).
http://dx.doi.org/10.1016/0038-1101(63)90078-9
44.
44.J. Britt and C. Ferekides, Appl. Phys. Lett. 62, 2851 (1993).
http://dx.doi.org/10.1063/1.109629
45.
45.R. F. Brebrick and A. J. Strauss, J. Phys. Chem. Solids 25, 1441 (1964).
http://dx.doi.org/10.1016/0022-3697(64)90059-9
46.
46.J. M. Kestner, S. McElvain, S. Kelly, L. M. Woods, T. R. Ohno, and C. A. Wolden, Sol. Energy Mater. Sol. Cells 83, 55 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.02.013
47.
47.P. V. Meyers and S. P. Albright, Prog. Photovoltaics 8, 161 (2000).
http://dx.doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<161::AID-PIP307>3.0.CO;2-A
48.
48.X. Wu, Sol. Energy 77, 803 (2004).
http://dx.doi.org/10.1016/j.solener.2004.06.006
49.
49.A. D. Compaan, A. Gupta, S. Lee, S. Wang, and J. Drayton, Sol. Energy 77, 815 (2004).
http://dx.doi.org/10.1016/j.solener.2004.06.013
50.
50.X. Wu, S. Asher, D. H. Levi, D. E. King, Y. Yan, T. A. Gessert, and P. Sheldon, J. Appl. Phys. 89, 4564 (2001).
http://dx.doi.org/10.1063/1.1351539
51.
51.N. Naghavi et al., Prog. Photovoltaics 18, 411 (2010).
http://dx.doi.org/10.1002/pip.955
52.
52.D. W. Niles, G. Herdt, and M. Al-Jassim, J. Appl. Phys. 81, 1978 (1997).
http://dx.doi.org/10.1063/1.364054
53.
53.M. A. Hernández-Fenollosa, D. P. Halliday, K. Durose, M. D. Campo, and J. Beier, Thin Solid Films 431–432, 176 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00238-4
54.
54.M. Carmody, S. Mallick, J. Margetis, R. Kodama, T. Biegala, D. Xu, P. Bechmann, J. W. Garland, and S. Sivananthan, Appl. Phys. Lett. 96, 153502 (2010).
http://dx.doi.org/10.1063/1.3386529
55.
55.W. K. Metzger, I. L. Repins, and M. A. Contreras, Appl. Phys. Lett. 93, 022110 (2008).
http://dx.doi.org/10.1063/1.2957983
56.
56.J. Sites and J. Pan, Thin Solid Films 515, 6099 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.147
57.
57.M. Beck (personal communication).
58.
58.M. A. Green, Prog. Photovoltaics (2011) (in press).
59.
59.D. Cahen and R. Noufi, Sol. Cells 30, 53 (1991).
http://dx.doi.org/10.1016/0379-6787(91)90037-P
60.
60.H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. C. Dippo, and L. L. Kazmerski, J. Vac. Sci. Technol. A 16, 1251 (1998).
http://dx.doi.org/10.1116/1.581269
61.
61.D. Grecu and A. D. Compaan, Appl. Phys. Lett. 75, 361 (1999).
http://dx.doi.org/10.1063/1.124375
62.
62.Y. Yan, D. Albin, and M. M. Al-Jassim, Appl. Phys. Lett. 78, 171 (2001).
http://dx.doi.org/10.1063/1.1338969
63.
63.S. Erra, C. Shivakumar, H. Zhao, K. Barri, D. L. Morel, and C. S. Ferekides, Thin Solid Films 515, 5833 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.064
64.
64.T. A. Gessert, S. Asher, S. Johnston, M. Young, P. Dippo, and C. Corwine, Thin Solid Films 515, 6103 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.107
65.
65.V. M. Fthenakis, M. Fuhrmann, J. Heiser, A. Lanzirotti, J. Fitts, and W. Wang, Prog. Photovoltaics 13, 713 (2005).
http://dx.doi.org/10.1002/pip.624
66.
66.H. Steinberger, Prog. Photovoltaics 6, 99 (1998).
http://dx.doi.org/10.1002/(SICI)1099-159X(199803/04)6:2<99::AID-PIP211>3.0.CO;2-Q
67.
67.D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671 (1976).
http://dx.doi.org/10.1063/1.88617
68.
68.A. H. Mahan, Y. Xu, E. Iwaniczko, D. L. Williamson, B. P. Nelson, and Q. Wang, J. Non-Cryst. Solids 299–302, 2 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)00927-4
69.
69.A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovoltaics 12, 113 (2004).
http://dx.doi.org/10.1002/pip.533
70.
70.D. L. Staebler and C. R. Wronski, Appl. Phys. Lett. 31, 292 (1977).
http://dx.doi.org/10.1063/1.89674
71.
71.S. Veprek and V. Marecek, Solid-State Electron. 11, 683 (1968).
http://dx.doi.org/10.1016/0038-1101(68)90071-3
72.
72.A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, and U. Graf, Thin Solid Films 403–404, 179 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01658-3
73.
73.J. Yang, A. Banerjee, and S. Guha, Appl. Phys. Lett. 70, 2975 (1997).
http://dx.doi.org/10.1063/1.118761
74.
74.M. Taguchi, H. Sakata, Y. Yoshimine, E. Maruyama, A. Terakawa, M. Tanaka, and S. Kiyama, in Proceedings of the of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FL, 2005, p. 866.
75.
75.A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, and A. Shah, J. Appl. Phys. 88, 148 (2000).
http://dx.doi.org/10.1063/1.373635
76.
76.T. Roschek, T. Repmann, J. Muller, B. Rech, and H. Wagner, J. Vac. Sci. Technol. A 20, 492 (2002).
http://dx.doi.org/10.1116/1.1450585
77.
77.M. Fukawa, S. Suzuki, L. H. Guo, M. Kondo, and A. Matsuda, Sol. Energy Mater. Sol. Cells 66, 217 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00176-8
78.
78.Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, F. Finger, and X. Geng, J. Appl. Phys. 97, 114913 (2005).
http://dx.doi.org/10.1063/1.1927689
79.
79.J. Rüdiger, H. Brechtel, A. Kottwitz, J. Kuske, and U. Stephan, Thin Solid Films 427, 16 (2003).
http://dx.doi.org/10.1016/S0040-6090(02)01174-4
80.
80.M. N. van den Donker, B. Rech, F. Finger, W. M. M. Kessels, and M. C. M. van de Sanden, Appl. Phys. Lett. 87, 263503 (2005).
http://dx.doi.org/10.1063/1.2152115
81.
81.L. L. Kazmerski, F. R. White, and G. K. Morgan, Appl. Phys. Lett. 29, 268 (1976).
http://dx.doi.org/10.1063/1.89041
82.
82.L. Stolt, J. Hedström, J. Kessler, M. Ruckh, K. -O. Velthaus, and H. -W. Schock, Appl. Phys. Lett. 62, 597 (1993).
http://dx.doi.org/10.1063/1.108867
83.
83.A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Herman, Appl. Phys. Lett. 65, 198 (1994).
http://dx.doi.org/10.1063/1.112670
84.
84.T. Anegawa, Y. Oda, T. Minemoto, and H. Takakura, J. Cryst. Growth 311, 742 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.136
85.
85.A. N. Tiwari, D. Lincot, and M. Contreras, Prog. Photovoltaics 18, 389 (2010).
http://dx.doi.org/10.1002/pip.1010
86.
86.S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Matsubara, Prog. Photovoltaics 18, 453 (2010).
http://dx.doi.org/10.1002/pip.969
87.
87.M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, F. Hasoon, and R. Noufi, Prog. Photovoltaics 7, 311 (1999).
http://dx.doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G
88.
88.K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, Thin Solid Films 480–481, 499 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.050
89.
89.R. Scheer, A. Pérez-Rodríguez, and W. K. Metzger, Prog. Photovoltaics 18, 467 (2010).
http://dx.doi.org/10.1002/pip.966
90.
90.C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot, and A. N. Tiwari, Prog. Photovoltaics 18, 434 (2010).
http://dx.doi.org/10.1002/pip.914
91.
91.R. N. Bhattacharya, J. Electrochem. Soc. 130, 2040 (1983).
http://dx.doi.org/10.1149/1.2119516
92.
92.D. Lincot et al., Sol. Energy 77, 725 (2004).
http://dx.doi.org/10.1016/j.solener.2004.05.024
93.
93.M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, J. Am. Chem. Soc. 130, 16770 (2008).
http://dx.doi.org/10.1021/ja805845q
94.
94.M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg, and A. N. Tiwari, Thin Solid Films 431–432, 58 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00194-9
95.
95.V. K. Kapur, B. M. Basol, and E. S. Tseng, Sol. Cells 21, 65 (1987).
http://dx.doi.org/10.1016/0379-6787(87)90105-0
96.
96.V. K. Kapur, A. Bansal, P. Le, and O. I. Asensio, Thin Solid Films 431–432, 53 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00253-0
97.
97.J. van Duren, D. Jackrel, F. Jacob, C. Leidholm, A. Pudov, M. Robinson, and Y. Roussillon, in Conference Record of the 17th International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, 2007.
98.
98.D. B. Mitzi, Adv. Mater. 21, 3141 (2009).
http://dx.doi.org/10.1002/adma.200802027
99.
99.W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, and O. Gunawan, Chem. Mater. 22, 1010 (2010).
http://dx.doi.org/10.1021/cm901950q
100.
100.S. Siebentritt, M. Igalson, C. Persson, and S. Lany, Prog. Photovoltaics 18, 390 (2010).
http://dx.doi.org/10.1002/pip.936
101.
101.G. L. Graff, R. E. Williford, and P. E. Burrows, J. Appl. Phys. 96, 1840 (2004).
http://dx.doi.org/10.1063/1.1768610
102.
102.B. A. Andersson, Prog. Photovoltaics 8, 61 (2000).
http://dx.doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO;2-6
103.
103.M. A. Green, Prog. Photovoltaics 17, 347 (2009).
http://dx.doi.org/10.1002/pip.899
104.
104.C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).
http://dx.doi.org/10.1021/es8019534
105.
105.V. Fthenakis, Renewable Sustainable Energy Rev. 13, 2746 (2009).
http://dx.doi.org/10.1016/j.rser.2009.05.001
106.
106.K. Zweibel, Science 328, 699 (2010).
http://dx.doi.org/10.1126/science.1189690
107.
107.K. Zweibel, Sol. Energy Mater. Sol. Cells 63, 375 (2000).
http://dx.doi.org/10.1016/S0927-0248(00)00057-X
108.
108.B. O’Regan and M. Gratzel, Nature (London) 353, 737 (1991).
http://dx.doi.org/10.1038/353737a0
109.
109.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev. (Washington, D.C.) 110, 6595 (2010).
http://dx.doi.org/10.1021/cr900356p
110.
110.M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, J. Am. Chem. Soc. 115, 6382 (1993).
http://dx.doi.org/10.1021/ja00067a063
111.
111.G. E. Tulloch, J. Photochem. Photobiol., A 164, 209 (2004).
http://dx.doi.org/10.1016/j.jphotochem.2004.01.027
112.
112.T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, and J. T. Hupp, Energy Environ. Sci. 1, 66 (2008).
http://dx.doi.org/10.1039/b809672d
113.
113.R. Harikisun and H. Desilvestro, Sol. Energy (2011) (in press).
114.
114.N. Kato, K. Higuchi, H. Tanaka, J. Nakajima, T. Sano, and T. Toyoda, Sol. Energy Mater. Sol. Cells 95, 301 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.04.019
115.
115.C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, Adv. Mater. 22, 3839 (2010).
http://dx.doi.org/10.1002/adma.200903697
116.
116.Heliatek, http://www.heliatek.com/news-19, 1 December 2010.
118.
118.C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
119.
119.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
120.
120.S. K. Hau, H. L. Yip, and A. K. Y. Jen, Polym. Rev. 50, 474 (2010).
http://dx.doi.org/10.1080/15583724.2010.515764
121.
121.C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
122.
122.M. Riede, T. Mueller, W. Tress, R. Schueppel, and K. Leo, Nanotechnology 19, 424001 (2008).
http://dx.doi.org/10.1088/0957-4484/19/42/424001
123.
123.H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.02.021
124.
124.E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 91, 954 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.01.015
125.
125.R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. d. Boer, Polym. Rev. 48, 531 (2008).
http://dx.doi.org/10.1080/15583720802231833
126.
126.M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, Science 321, 226 (2008).
http://dx.doi.org/10.1126/science.1158342
127.
127.D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, Adv. Funct. Mater. 19, 1939 (2009).
http://dx.doi.org/10.1002/adfm.200900090
128.
128.T. Ameri, G. Dennler, C. Lungenschmied, and C. J. Brabec, Energy Environ. Sci. 2, 347 (2009).
http://dx.doi.org/10.1039/b817952b
129.
129.A. Anctil, C. Babbit, B. Landi, and R. P. Raffaelle, in Proceedings of the 35th IEEE Photovoltaic Specialist Conference, Honolulu, HI, 2010, p. 742.
130.
130.R. García-Valverde, J. A. Cherni, and A. Urbina, Prog. Photovoltaics 18, 535 (2010).
http://dx.doi.org/10.1002/pip.967
131.
131.J. Kalowekamo and E. Baker, Sol. Energy 83, 1224 (2009).
http://dx.doi.org/10.1016/j.solener.2009.02.003
132.
132.R. Tipnis, J. Bernkopf, S. J. Jia, J. Krieg, S. Li, M. Storch, and D. Laird, Sol. Energy Mater. Sol. Cells 93, 442 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.018
133.
133.V. Shrotriya, Nat. Photonics 3, 447 (2009).
http://dx.doi.org/10.1038/nphoton.2009.130
134.
134.M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
135.
135.A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).
http://dx.doi.org/10.1016/S0927-0248(97)00233-X
136.
136.A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner, and H. Tributsch, Sol. Energy Mater. Sol. Cells 29, 289 (1993).
http://dx.doi.org/10.1016/0927-0248(93)90095-K
137.
137.H. Katagiri, Thin Solid Films 480–481, 426 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.024
138.
138.H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, Sol. Energy Mater. Sol. Cells 65, 141 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00088-X
139.
139.K. Oishi et al., Thin Solid Films 517, 1449 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.09.056
140.
140.Q. J. Guo, H. W. Hillhouse, and R. Agrawal, J. Am. Chem. Soc. 131, 11672 (2009).
http://dx.doi.org/10.1021/ja904981r
141.
141.C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, J. Am. Chem. Soc. 131, 12554 (2009).
http://dx.doi.org/10.1021/ja905922j
142.
142.T. K. Todorov, K. B. Reuter, and D. B. Mitzi, Adv. Mater. 22, E156 (2010).
http://dx.doi.org/10.1002/adma.200904155
143.
143.N. S. Lewis and G. Crabtree, Basic Research Needs for Solar Energy Utilization (U.S. Department of Energy, Washington, 2005).
144.
144.R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.186601
145.
145.A. J. Nozik, Chem. Phys. Lett. 457, 3 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.03.094
146.
146.W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. -Y. Zhu, Science 328, 1543 (2010).
http://dx.doi.org/10.1126/science.1185509
147.
147.J. B. Sambur, T. Novet, and B. A. Parkinson, Science 330, 63 (2010).
http://dx.doi.org/10.1126/science.1191462
148.
148.J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett. 8, 3488 (2008).
http://dx.doi.org/10.1021/nl802476m
149.
149.Y. Wu, C. Wadia, W. L. Ma, B. Sadtler, and A. P. Alivisatos, Nano Lett. 8, 2551 (2008).
http://dx.doi.org/10.1021/nl801817d
150.
150.J. F. Geisz et al., Appl. Phys. Lett. 91, 023502 (2007).
http://dx.doi.org/10.1063/1.2753729
151.
151.J. D. Beach and B. E. McCandless, Mater. Res. Bull. 32, 225 (2007).
http://dx.doi.org/10.1557/mrs2007.26
152.
152.National Nanotechnology Initiative—2011 Budget Supplement, http://www.nano.gov/NNI_2011_budget_supplement.pdf, 2010.
153.
153.S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 93, 251108 (2008).
http://dx.doi.org/10.1063/1.3050463
154.
154.K. Tanabe, Energy 2, 504 (2009).
http://dx.doi.org/10.3390/en20300504
155.
155.B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
156.
156.A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, Appl. Phys. Lett. 92, 013504 (2008).
http://dx.doi.org/10.1063/1.2823578
157.
157.C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, and I. Tobias, Sol. Energy Mater. Sol. Cells 91, 238 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.09.003
158.
158.D. Timmerman, I. Izeddin, P. Stallinga, I. N. Yassievich, and T. Gregorkiewicz, Nat. Photonics 2, 105 (2008).
http://dx.doi.org/10.1038/nphoton.2007.279
159.
159.T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 4117 (2002).
http://dx.doi.org/10.1063/1.1505677
160.
160.F. Auzel, Chem. Rev. (Washington, D.C.) 104, 139 (2004).
http://dx.doi.org/10.1021/cr020357g
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/29/3/10.1116/1.3569757
Loading
/content/avs/journal/jvsta/29/3/10.1116/1.3569757
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/29/3/10.1116/1.3569757
2011-03-29
2016-08-28

Abstract

In May 2010 the United States National Science Foundation sponsored a two-day workshop to review the state-of-the-art and research challenges in photovoltaic(PV)manufacturing. This article summarizes the major conclusions and outcomes from this workshop, which was focused on identifying the science that needs to be done to help accelerate PVmanufacturing. A significant portion of the article focuses on assessing the current status of and future opportunities in the major PVmanufacturingtechnologies. These are solar cells based on crystalline silicon (c-Si), thin films of cadmium telluride (CdTe), thin films of copper indium gallium diselenide, and thin films of hydrogenated amorphous and nanocrystalline silicon. Current trends indicate that the cost per watt of c-Si and CdTesolar cells are being reduced to levels beyond the constraints commonly associated with these technologies. With a focus on TW/yr production capacity, the issue of material availability is discussed along with the emerging technologies of dye-sensitized solar cells and organic photovoltaics that are potentially less constrained by elemental abundance. Lastly, recommendations are made for research investment, with an emphasis on those areas that are expected to have cross-cutting impact.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/29/3/1.3569757.html;jsessionid=3YvK4LsKVVaOu5PArCC84xqw.x-aip-live-02?itemId=/content/avs/journal/jvsta/29/3/10.1116/1.3569757&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/29/3/10.1116/1.3569757&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/29/3/10.1116/1.3569757'
Right1,Right2,Right3,