1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/30/1/10.1116/1.3660699
1.
1. M. Armand and J. M. Tarascon, Nature (London) 451, 652 (2008).
http://dx.doi.org/10.1038/451652a
2.
2. J. M. Tarascon, N. Recham, M. Armand, J. N. Chotard, P. Barpanda, W. Walker, and L. Dupont, Chem. Mater. 22, 724 (2010).
http://dx.doi.org/10.1021/cm9030478
3.
3. Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou, Nanoscale 2, 1294 (2010).
http://dx.doi.org/10.1039/c0nr00068j
4.
4. P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem., Int. Ed. 47, 2930 (2008).
http://dx.doi.org/10.1002/anie.v47:16
5.
5. J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, Chem. Rev. 104, 4463 (2004).
http://dx.doi.org/10.1021/cr020740l
6.
6. D. R. Rolison, R. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. Mcevoy, M. E. Bourga, and A. M. Lubers, Chem. Soc. Rev. 38, 226 (2009).
http://dx.doi.org/10.1039/b801151f
7.
7. P. H. L. Notten, F. Roozeboom, R. A. H. Niessen, and L. Baggetto, Adv. Mater. 19, 4564 (2007).
http://dx.doi.org/10.1002/adma.v19:24
8.
8. D. Linden and T. B. Reddy, Handbook Of Batteries, 3rd ed. (McGraw-Hill, New York, 2001).
9.
9. M. R. Palacin, Chem. Soc. Rev. 38, 2565 (2009).
http://dx.doi.org/10.1039/b820555h
10.
10. L. Baggetto, R. A. H. Niessen, F. Roozeboom, and P. H. L. Notten, Adv. Funct. Mater. 18, 1057 (2008).
http://dx.doi.org/10.1002/adfm.v18:7
11.
11. L. Baggetto, D. Danilov, and P. H. L. Notten, Adv. Mater. 23, 1563 (2011).
http://dx.doi.org/10.1002/adma.201003665
12.
12. J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater. 22, E170 (2010).
http://dx.doi.org/10.1002/adma.201000717
13.
13. H. Li, P. Balaya, and J. Maier, J. Electrochem. Soc. 151, A1878 (2004).
http://dx.doi.org/10.1149/1.1801451
14.
14. D. W. Liu and G. Z. Cao, Energy Environ. Sci. 3, 1218 (2010).
http://dx.doi.org/10.1039/b922656g
15.
15. M. Wagemaker, W. J. H. Borghols, and F. M. Mulder, J. Am. Chem. Soc. 129, 4323 (2007).
http://dx.doi.org/10.1021/ja067733p
16.
16. E. Peled, D. Golodnitsky, and G. Ardel, J. Electrochem. Soc. 144, L208 (1997).
http://dx.doi.org/10.1149/1.1837858
17.
17. S. T. Myung, K. Amine, and Y. K. Sun, J. Mater. Chem. 20, 7074 (2010).
http://dx.doi.org/10.1039/c0jm00508h
18.
18. Z. H. Chen, Y. Qin, K. Amine, and Y. K. Sun, J. Mater. Chem. 20, 7606 (2010).
http://dx.doi.org/10.1039/c0jm00154f
19.
19. J. B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).
http://dx.doi.org/10.1021/cm901452z
20.
20. L. Baggetto, J. F. M. Oudenhoven, T. van Dongen, J. H. Klootwijk, M. Mulder, R. A. H. Niessen, M. H. J. M. de Croon, and P. H. L. Notten, J. Power Sources 189, 402 (2009).
http://dx.doi.org/10.1016/j.jpowsour.2008.07.076
21.
21. J. F. M. Oudenhoven, L. Baggetto, and P. H. L. Notten, Adv. Energy Mater. 1, 10 (2011).
http://dx.doi.org/10.1002/aenm.201000002
22.
22. G. Poupon et al., Proc. IEEE 97, 60 (2009).
http://dx.doi.org/10.1109/JPROC.2008.2007464
23.
23. R. Salot, S. Martin, S. Oukassi, M. Bedjaoui, and J. Ubrig, Appl. Surf. Sci. 256, S54 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.09.086
24.
24. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
25.
25. S. M. George, Chem. Rev. 110, 111 (2010).
http://dx.doi.org/10.1021/cr900056b
26.
26. S. Yokoyama, K. Ohba, and A. Nakajima, Appl. Phys. Lett. 79, 617 (2001).
http://dx.doi.org/10.1063/1.1389508
27.
27. S. M. George, B. Yoon, and A. A. Dameron, Acc. Chem. Res. 42, 498 (2009).
http://dx.doi.org/10.1021/ar800105q
28.
28. H. B. Profijt, S. E. Potts, and W. M. M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).
http://dx.doi.org/10.1116/1.3609974
29.
29. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010).
http://dx.doi.org/10.1149/1.3491381
30.
30. J. Maula, MIICS 2010, Mikkeli, Finland, 18 March 2010 (unpublished).
31.
31. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. 22, 3564 (2010).
http://dx.doi.org/10.1002/adma.201000766
32.
32. B. J. Neudecker, N. J. Dudney, and J. B. Bates, J. Electrochem. Soc. 147, 517 (2000).
http://dx.doi.org/10.1149/1.1393226
33.
33. M. Leskelä and M. Ritala, Thin Solid Films 409, 138 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00117-7
34.
34. S. B. S. Heil, E. Langereis, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 153, G956 (2006).
http://dx.doi.org/10.1149/1.2344843
35.
35. H. C. M. Knoops, L. Baggetto, E. Langereis, M. C. M. van de Sanden, J. H. Klootwijk, F. Roozeboom, R. A. H. Niessen, P. H. L. Notten, and W. M. M. Kessels, J. Electrochem. Soc. 155, G287 (2008).
http://dx.doi.org/10.1149/1.2988651
36.
36. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Mater. 15, 1924 (2003).
http://dx.doi.org/10.1021/cm021333t
37.
37. H. C. M. Knoops, A. J. M. Mackus, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, Electrochem. Solid-State Lett. 12, G34 (2009).
http://dx.doi.org/10.1149/1.3125876
38.
38. T. Aaltonen, M. Alnes, O. Nilsen, L. Costelle, and H. Fjellvag, J. Mater. Chem. 20, 2877 (2010).
http://dx.doi.org/10.1039/b923490j
39.
39. M. Putkonen, T. Aaltonen, M. Alnes, T. Sajavaara, O. Nilsen, and H. Fjellvag, J. Mater. Chem. 19, 8767 (2009).
http://dx.doi.org/10.1039/b913466b
40.
40. M. Putkonen, T. Sajavaara, P. Rahkila, L. Xu, S. Cheng, L. Niinistö, and H. J. Whitlow, Thin Solid Films 517, 5819 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.013
41.
41. K. B. Gandrud, Baltic ALD Conference 2010, Hamburg, Germany, 16–17 September 2010 (unpublished).
42.
42. M. E. Donders, H. C. M. Knoops, W. M. M. Kessels, and P. H. L. Notten, ECS Trans. 41, 321 (2011).
http://dx.doi.org/10.1149/1.3633683
43.
43. A. Patil, V. Patil, D. Wook Shin, J. W. Choi, D. S. Paik, and S. J. Yoon, Mater. Res. Bull. 43, 1913 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.08.031
44.
44. X. H. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, J. Electrochem. Soc. 144, 524 (1997).
http://dx.doi.org/10.1149/1.1837443
45.
45. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
46.
46. H. J. Cho et al., Solid-State Electron. 51, 1529 (2011).
http://dx.doi.org/10.1016/j.sse.2007.09.030
47.
47. D. Danilov, Y. Xu, L. Gao, V. Pop, and P. H. L. Notten, Proceedings of Power MEMS 2010, Leuven, Belgium, 30 November–3 December (unpublished).
48.
48. D. Danilov, R. A. H. Niessen, and P. H. L. Notten, J. Electrochem. Soc. 158, A215 (2011).
http://dx.doi.org/10.1149/1.3521414
49.
49. J. Hämäläinen, T. Hatanpää, J. Holopainen, F. Munnik, M. Ritala, and M. Leskelä, ALD 2011 Conference, Cambridge, MA, 26–29 June 2011 (unpublished).
50.
50. J. M. Lee, S. H. Kim, Y. Tak, and Y. S. Yoon, J. Power Sources 163, 173 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.07.036
51.
51. A. M. Glass and K. Nassau, J. Appl. Phys. 51, 3756 (1980).
http://dx.doi.org/10.1063/1.328164
52.
52. Y.-C. Perng, J. Cho, D. Membreno, B. Dunn, M. F. Toney, and J. P. Chang, ALD 2011 Conference, Cambridge, MA, 26–29 June 2011 (unpublished).
53.
53. M. Q. Snyder, S. A. Trebukhova, B. Ravdel, M. C. Wheeler, J. DiCarlo, C. P. Tripp, and W. J. DeSisto, J. Power Sources 165, 379 (2007).
http://dx.doi.org/10.1016/j.jpowsour.2006.12.015
54.
54. Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, and S. H. Lee, J. Electrochem. Soc. 157, A75 (2010).
http://dx.doi.org/10.1149/1.3258274
55.
55. J. T. Lee, F. M. Wang, C. S. Cheng, C. C. Li, and C. H. Lin, Electrochim. Acta 55, 4002 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.02.043
56.
56. I. D. Scott, Y. S. Jung, A. S. Cavanagh, Y. Yan, A. C. Dillon, S. M. George, and S.-H. Lee, Nano Lett. 11, 414 (2011).
http://dx.doi.org/10.1021/nl1030198
57.
57. L. A. Riley, S. V. Atta, A. S. Cavanagh, Y. Yan, S. M. George, P. Liu, A. C. Dillon, and S.-H. Lee, J. Power Sources 196, 3317 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.11.124
58.
58. Y. S. Jung, A. S. Cavanagh, L. A. Riley, S.-H. Kang, A. C. Dillon, M. D. Groner, S. M. George, and S.-H. Lee, Adv. Mater. 22, 2172 (2010).
http://dx.doi.org/10.1002/adma.200903951
59.
59. L. A. Riley, A. S. Cavanagh, S. M. George, Y. S. Jung, Y. F. Yan, S. H. Lee, and A. C. Dillon, ChemPhysChem 11, 2124 (2010).
http://dx.doi.org/10.1002/cphc.201000158
60.
60. E. Kang, Y. S. Jung, A. S. Cavanagh, G.-H. Kim, S. M. George, A. C. Dillon, J. K. Kim, and J. Lee, Adv. Funct. Mater. 21, 2430 (2011).
http://dx.doi.org/10.1002/adfm.201002576
61.
61. D. Ahn and R. Raj, J. Power Sources 195, 3900 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2009.12.116
62.
62. X. B. Meng, D. S. Geng, J. A. Liu, M. N. Banis, Y. Zhang, R. Y. Li, and X. L. Sun, J. Phys. Chem. C 114, 18330 (2010).
http://dx.doi.org/10.1021/jp105852h
63.
63. S. W. Kim, T. H. Han, J. Kim, H. Gwon, H. S. Moon, S. W. Kang, S. O. Kim, and K. Kang, ACS Nano 3, 1085 (2009).
http://dx.doi.org/10.1021/nn900062q
64.
64. K. Gerasopoulos, X. L. Chen, J. Culver, C. S. Wang, and R. Ghodssi, Chem. Commun. (London) 46, 7349 (2010).
65.
65. S. K. Cheah et al., Nano Lett. 9, 3230 (2009).
http://dx.doi.org/10.1021/nl9014843
66.
66. J. P. Zhao, X. Wang, Z. Y. Chen, S. Q. Yang, T. S. Shi, and X. H. Liu, J. Phys. D: Appl. Phys. 30, 5 (1997).
http://dx.doi.org/10.1088/0022-3727/30/1/002
67.
67. L. Baggetto, H. C. M. Knoops, R. A. H. Niessen, W. M. M. Kessels, and P. H. L. Notten, J. Mater. Chem. 20, 3703 (2010).
http://dx.doi.org/10.1039/b926044g
68.
68. H. C. M. Knoops, M. E. Donders, L. Baggetto, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, ECS Trans. 25, 333 (2009).
http://dx.doi.org/10.1149/1.3205068
69.
69. J. C. Badot, S. Ribes, E. B. Yousfi, V. Vivier, J. P. Pereira-Ramos, N. Baffier, and D. Lincot, Electrochem. Solid-State Lett. 3, 485 (2000).
http://dx.doi.org/10.1149/1.1391187
70.
70. M. E. Donders, H. C. M. Knoops, W. M. M. Kessels, and P. H. L. Notten, J. Power Sources 203, 72 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2011.12.020
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/30/1/10.1116/1.3660699
Loading
/content/avs/journal/jvsta/30/1/10.1116/1.3660699
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/30/1/10.1116/1.3660699
2011-11-21
2015-08-02

Abstract

Nanostructuring is targeted as a solution to achieve the improvements required for implementing Li-ion batteries in a wide range of applications. These applications range in size from electrical vehicles down to microsystems. Atomic layer deposition (ALD) could be an enabling technology for nanostructured Li-ion batteries as it is capable of depositing ultrathin films (1–100 nm) in complex structures with precise growth control. The potential of ALD is reviewed for three battery concepts that can be distinguished, i.e., particle-based electrodes, 3D-structured electrodes, and 3D all-solid-state microbatteries. It is discussed that a large range of materials can be deposited by ALD and recent demonstrations of battery improvements by ALD are used to exemplify its large potential.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/30/1/1.3660699.html;jsessionid=tqle50kngf2j.x-aip-live-03?itemId=/content/avs/journal/jvsta/30/1/10.1116/1.3660699&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Atomic layer deposition for nanostructured Li-ion batteries
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/30/1/10.1116/1.3660699
10.1116/1.3660699
SEARCH_EXPAND_ITEM