1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Colloidal nanocrystal quantum dot assemblies as artificial solids
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvsta/30/3/10.1116/1.4705402
1.
1. A. D. Yoffe, Adv. Phys. 50, 1 (2001).
http://dx.doi.org/10.1080/00018730010006608
2.
2. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, Ann. Rev. Mater. Res. 34, 1 (2004).
http://dx.doi.org/10.1146/annurev.matsci.34.040203.111535
3.
3. R. Dingle, W. Wiegmann, and C. Henry, Phys. Rev. Lett. 33, 827 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.827
4.
4. C. Murray, C. Kagan, and M. Bawendi, Ann. Rev. Mater. Sci. 30, 545 (2000).
http://dx.doi.org/10.1146/annurev.matsci.30.1.545
5.
5. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010).
http://dx.doi.org/10.1021/cr900137k
6.
6. Y. Yin and A. P. Alivisatos, Nature 437, 664 (2005).
http://dx.doi.org/10.1038/nature04165
7.
7. C. Collier, T. Vossmeyer, and J. Heath, Ann. Rev. Phys. Chem. 49, 371 (1998).
http://dx.doi.org/10.1146/annurev.physchem.49.1.371
8.
8. A. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
9.
9. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
10.
10. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
11.
11. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
12.
12. L. D. Hicks, T. C. Harman, and M. S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).
http://dx.doi.org/10.1063/1.110207
13.
13. A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Nature 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
14.
14. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004).
http://dx.doi.org/10.1126/science.1092963
15.
15. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
http://dx.doi.org/10.1038/35098012
16.
16. R. Y. Wang, J. P. Feser, J. S. Lee, D. V. Talapin, R. Segalman, and A. Majumdar, Nano Lett. 8, 2283 (2008).
http://dx.doi.org/10.1021/nl8009704
17.
17. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).
http://dx.doi.org/10.1073/pnas.93.15.7436
18.
18. T. E. Humphrey and H. Linke, Phys. Rev. Lett. 94, 7436 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.096601
19.
19. T. M. Tritt, H. Boettner, and L. Chen, MRS Bull. 33, 366 (2008).
http://dx.doi.org/10.1557/mrs2008.73
20.
20. W. Kim, R. Wang, and A. Majumdar, Nano Today 2, 40 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70018-X
21.
21. G. J. Snyder and E. S. Toberer, Nat. Mater 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
22.
22. J. Baxter et al., Energy Environ. Sci. 2, 559 (2009).
http://dx.doi.org/10.1039/b821698c
23.
23. D. Milliron, I. Gur, and A. Alivisatos, Mrs Bull. 30, 41 (2005).
http://dx.doi.org/10.1557/mrs2005.8
24.
24. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, Chem. Rev. 110, 6873 (2010).
http://dx.doi.org/10.1021/cr900289f
25.
25. A. L. Rogach et al., Angew. Chem. Int. Ed. 47, 6538 (2008).
http://dx.doi.org/10.1002/anie.200705109
26.
26. N. Gaponik, S. G. Hickey, D. Dorfs, A. L. Rogach, and A. Eychmuller, Small 6, 1364 (2010).
http://dx.doi.org/10.1002/smll.200902006
27.
27. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Adv. Mater. 22, 3970 (2010).
http://dx.doi.org/10.1002/adma.201000839
28.
28. Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, and S.-G. Sun, Chem. Soc. Rev. 40, 4167 (2011).
http://dx.doi.org/10.1039/c0cs00176g
29.
29. A. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. van Schalkwijk, Nat. Mater. 4, 366 (2005).
http://dx.doi.org/10.1038/nmat1368
30.
30. P. G. Bruce, B. Scrosati, and J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).
http://dx.doi.org/10.1002/anie.200702505
31.
31. A. T. Bell, Science 299, 1688 (2003).
http://dx.doi.org/10.1126/science.1083671
32.
32. R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B 109, 12663 (2005).
http://dx.doi.org/10.1021/jp051066p
33.
33. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
http://dx.doi.org/10.1126/science.281.5385.2013
34.
34. X. Michalet et al., Science 307, 538 (2005).
http://dx.doi.org/10.1126/science.1104274
35.
35. V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRC, Boca Raton, 2009).
36.
36. G. Markovich, C. P. Collier, S. E. Henrichs, F. o. Remacle, R. D. Levine, and J. R. Heath, Acc. Chem. Res. 32, 415 (1999).
http://dx.doi.org/10.1021/ar980039x
37.
37. T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, and H. A. Waller, Science 267, 1476 (1995).
http://dx.doi.org/10.1126/science.267.5203.1476
38.
38. G. Bryant, Phys. Rev. B 40, 1620 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.1620
39.
39. C. Murray, C. Kagan, and M. Bawendi, Science 270, 1335 (1995).
http://dx.doi.org/10.1126/science.270.5240.1335
40.
40. G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282, 734 (1998).
http://dx.doi.org/10.1126/science.282.5389.734
41.
41. G. D. Stucky and J. E. Macdougall, Science 247, 669 (1990).
http://dx.doi.org/10.1126/science.247.4943.669
42.
42. D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach (Univeristy Science Books, Sausolito, 1997).
43.
43. K. Beverly, J. Sample, J. Sampaio, F. Remacle, J. Heath, and R. Levine, Proc. Natl. Acad. Sci. USA 99, 6456 (2002).
http://dx.doi.org/10.1073/pnas.251537898
44.
44. A. Bartnik, A. Efros, W. K. Koh, C. Murray, and F. Wise, Phys. Rev. B 82, 195313 (2010)
http://dx.doi.org/10.1103/PhysRevB.82.195313
45.
45. K.-S. Cho, D. V. Talapin, W. Gaschler, and C. B. Murray, J. Am. Chem. Soc. 127, 7140 (2005).
http://dx.doi.org/10.1021/ja050107s
46.
46. S. Kan, T. Mokari, E. Rothenberg, and U. Banin, Nat. Mater. 2, 155 (2003).
http://dx.doi.org/10.1038/nmat830
47.
47. C. Schliehe et al., Science 329, 550 (2010).
http://dx.doi.org/10.1126/science.1188035
48.
48. W. Buhro and V. Colvin, Nat. Mater. 2, 138 (2003).
http://dx.doi.org/10.1038/nmat844
49.
49. L. Brus, J. Chem. Phys. 80, 4403 (1984).
http://dx.doi.org/10.1063/1.447218
50.
50. A. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).
51.
51. A. Fojtik, H. Weller, U. Koch, and A. Henglein, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 88, 969 (1984).
52.
52. L. Brus, J. Chem. Phys. 79, 5566 (1983).
http://dx.doi.org/10.1063/1.445676
53.
53. L.-W. Wang and A. Zunger, Phys. Rev. B 53, 9579 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.9579
54.
54. P. E. Lippens and M. Lannoo, Phys. Rev. B 41, 6079 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.6079
55.
55. S. Öğüt, J. Chelikowsky, and S. Louie, Phys. Rev. Lett. 79, 1770 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1770
56.
56. F. W. Wise, Acc. Chem. Res. 33, 773 (2000).
http://dx.doi.org/10.1021/ar970220q
57.
57. U. Gnutzmann and K. Clausecker, Appl. Phys. A 3, 9 (1974).
58.
58. C. Menoni, L. Miao, D. Patel, O. Mic’ic, and A. Nozik, Phys. Rev. Lett. 84, 4168 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4168
59.
59. M. T. Trinh, A. J. Houtepen, J. M. Schins, J. Piris, and L. D. A. Siebbeles, Nano Lett. 8, 2112 (2008).
http://dx.doi.org/10.1021/nl8010963
60.
60. P. Liljeroth, L. Jdira, K. Overgaag, B. Grandidier, S. Speller, and D. L. Vanmaekelbergh, Phys. Chem. Chem. Phys. 8, 3845 (2006).
http://dx.doi.org/10.1039/b605436f
61.
61. G. Schedelbeck, W. Wegscheider, and M. Bichler, Science 278, 1792 (1997).
http://dx.doi.org/10.1126/science.278.5344.1792
62.
62. A. Zabet-Khosousi and A.-A. Dhirani, Chem. Rev. 108, 4072 (2008).
http://dx.doi.org/10.1021/cr0680134
63.
63. N. F. Mott, Conduction in Non-crystalline Materials, 2nd ed. (Clarendon, Oxford, 1993).
64.
64. C. Jiang and M. Green, J. Appl. Phys. 99, 114902 (2006).
http://dx.doi.org/10.1063/1.2203394
65.
65. O. Lazarenkova and A. Balandin, J. Appl. Phys. 89, 5509 (2001).
http://dx.doi.org/10.1063/1.1366662
66.
66. D. L. Nika, E. P. Pokatilov, Q. Shao, and A. A. Balandin, Phys. Rev. B 76, 125417 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125417
67.
67. T. Takagahara, Surf. Sci. 267, 310 (1992).
http://dx.doi.org/10.1016/0039-6028(92)91144-Z
68.
68. T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature 395, 873 (1998).
http://dx.doi.org/10.1038/27617
69.
69. A. Lagendijk, B. Van Tiggelen, and D. S. Wiersma, Phys. Today 62, 24 (2009).
http://dx.doi.org/10.1063/1.3206091
70.
70. I. Gomez, F. Dominguez-Adame, E. Diez, and P. Orellana, J. Appl. Phys. 92, 4486 (2002).
http://dx.doi.org/10.1063/1.1503393
71.
71. B. Smith and A. Nozik, Nano Lett. 1, 36 (2001).
http://dx.doi.org/10.1021/nl0001858
72.
72. F. Remacle and R. Levine, J. Phys. Chem. B 105, 2153 (2001).
http://dx.doi.org/10.1021/jp002972z
73.
73. M. A. El-Sayed, Acc. Chem. Res. 34, 257 (2001).
http://dx.doi.org/10.1021/ar960016n
74.
74. J. A. Tang and E. H. Sargent, Adv. Mater. 23, 12 (2011).
http://dx.doi.org/10.1002/adma.201001491
75.
75. W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, and X. Y. Zhu, Science 328, 1543 (2010).
http://dx.doi.org/10.1126/science.1185509
76.
76. R. D. Schaller and V. I. Klimov, Phys. Rev. Lett. 92, 1866011 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.186601
77.
77. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, Nano Lett. 5, 865 (2005).
http://dx.doi.org/10.1021/nl0502672
78.
78. G. Nair and M. Bawendi, Phys. Rev. B 76, 4 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.081304
79.
79. M. Ben-Lulu, D. Mocatta, M. Bonn, U. Banin, and S. Ruhman, Nano Lett. 8, 1207 (2008).
http://dx.doi.org/10.1021/nl080199u
80.
80. J. A. Mcguire, J. Joo, J. Pietryga, R. Schaller, and V. I. Klimov, Acc. Chem. Res. 41, 1810 (2008).
http://dx.doi.org/10.1021/ar800112v
81.
81. M. C. Beard, A. G. Midgett, M. Law, O. E. Semonin, R. J. Ellingson, and A. J. Nozik, Nano Lett. 9, 836 (2009).
http://dx.doi.org/10.1021/nl803600v
82.
82. G. Allan and C. Delerue, Phys. Rev. B 79, 5 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195324
83.
83. A. Shabaev, A. L. Efros, and A. J. Nozik, Nano Lett. 6, 2856 (2006).
http://dx.doi.org/10.1021/nl062059v
84.
84. J. A. McGuire, M. Sykora, J. Joo, J. M. Pietryga, and V. I. Klimov, Nano Lett. 10, 2049 (2010).
http://dx.doi.org/10.1021/nl100177c
85.
85. M. C. Beard, A. G. Midgett, M. C. Hanna, J. M. Luther, B. K. Hughes, and A. J. Nozik, Nano Lett. 10, 3019 (2010).
http://dx.doi.org/10.1021/nl101490z
86.
86. J. B. Sambur, T. Novet, and B. A. Parkinson, Science 330, 63 (2010).
http://dx.doi.org/10.1126/science.1191462
87.
87. O. E. Semonin, J. M. Luther, S. Choi, H.-Y. Chen, J. Gao, A. J. Nozik, and M. C. Beard, Science 334, 1530 (2011).
http://dx.doi.org/10.1126/science.1209845
88.
88. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).
http://dx.doi.org/10.1103/RevModPhys.65.599
89.
89. I. Robel, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 129, 4136 (2007).
http://dx.doi.org/10.1021/ja070099a
90.
90. X. M. Jiang, R. D. Schaller, S. B. Lee, J. M. Pietryga, V. I. Klimov, and A. A. Zakhidov, J. Mater. Res. 22, 2204 (2007).
http://dx.doi.org/10.1557/jmr.2007.0289
91.
91. H. Du, C. L. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, Nano Lett. 2, 1321 (2002).
http://dx.doi.org/10.1021/nl025785g
92.
92. J. M. Pietryga, R. D. Schaller, D. Werder, M. H. Stewart, V. I. Klimov, and J. A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).
http://dx.doi.org/10.1021/ja047659f
93.
93. D. Cui, J. Xu, T. Zhu, G. Paradee, and S. Ashok, Appl. Phys. Lett. 88, 183111 (2006).
http://dx.doi.org/10.1063/1.2201047
94.
94. C. Evans, L. Guo, J. Peterson, S. Maccagnano-Zacher, and T. Krauss, Nano Lett. 8, 2896 (2008).
http://dx.doi.org/10.1021/nl801685a
95.
95. Z. Zhu, E. Kurtz, K. Arai, Y. Chen, D. Bagnall, P. Tomashini, F. Lu, T. Sekiguchi, T. Yao, and T. Yasuda, Physica Status Solidi B 202, 827 (1997).
http://dx.doi.org/10.1002/1521-3951(199708)202:2<827::AID-PSSB827>3.0.CO;2-8
96.
96. H. Omi and T. Ogino, Phys. Rev. B 59, 7521 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.7521
97.
97. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
http://dx.doi.org/10.1103/PhysRevLett.64.1943
98.
98. C. Teichert, Phys Rep 365, 335 (2002).
http://dx.doi.org/10.1016/S0370-1573(02)00009-1
99.
99. S. Guha, A. Madhukar, and K. C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).
http://dx.doi.org/10.1063/1.103914
100.
100. C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Phys. Rev. Lett. 66, 3032 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.3032
101.
101. M. K. Zundel, P. Specht, K. Eberl, N. Y. JinPhillipp, and F. Phillipp, Appl. Phys. Lett. 71, 2972 (1997).
http://dx.doi.org/10.1063/1.120233
102.
102. M. C. Hanna, Z. H. Lu, A. F. Cahill, M. J. Heben, and A. J. Nozik, J. Cryst. Growth 174, 605 (1997).
http://dx.doi.org/10.1016/S0022-0248(97)00029-8
103.
103. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
http://dx.doi.org/10.1021/ja00072a025
104.
104. S. G. Kwon and T. Hyeon, Small 7, 2685 (2011).
http://dx.doi.org/10.1002/smll.201002022
105.
105. A. Henglein, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 86, 301 (1982).
106.
106. L. Mangolini, E. Thimsen, and U. Kortshagen, Nano Lett. 5, 655 (2005).
http://dx.doi.org/10.1021/nl050066y
107.
107. P. Shah, T. Hanrath, K. Johnston, and B. Korgel, J. Phys. Chem. B 108, 9574 (2004).
http://dx.doi.org/10.1021/jp049827w
108.
108. N. F. Borrelli and D. W. Smith, J. Non-Cryst. Solids 180, 25 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90393-X
109.
109. A. L. Rogach, Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications (Springer, Wien, 2008).
110.
110. V. K. Lamer and R. H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).
http://dx.doi.org/10.1021/ja01167a001
111.
111. T. Sugimoto, Adv. Colloid. Interface 28, 65 (1987).
http://dx.doi.org/10.1016/0001-8686(87)80009-X
112.
112. I. Moreels, B. Fritzinger, J. C. Martins, and Z. Hens, J. Am. Chem. Soc. 130, 15081 (2008).
http://dx.doi.org/10.1021/ja803994m
113.
113. I. C. Baek, S. I. Seok, N. C. Pramanik, S. Jana, M. A. Lim, B. Y. Ahn, C. J. Lee, and Y. J. Jeong, J. Colloid Interf. Sci. 310, 163 (2007).
http://dx.doi.org/10.1016/j.jcis.2007.01.017
114.
114. S. Abe, R. K. Čapek, B. De Geyter, and Z. Hens, ACS Nano 6, 42 (2011).
http://dx.doi.org/10.1021/nn204008q
115.
115. T. P. Martin, Phys. Rep. 273, 199 (1996).
http://dx.doi.org/10.1016/0370-1573(95)00083-6
116.
116. C. M. Evans, L. Guo, J. J. Peterson, S. Maccagnano-Zacher, and T. D. Krauss, Nano Lett. 8, 2896 (2008).
http://dx.doi.org/10.1021/nl801685a
117.
117. H. Zheng, R. K. Smith, Y.-w. Jun, C. Kisielowski, U. Dahmen, and A. P. Alivisatos, Science 324, 1309 (2009).
http://dx.doi.org/10.1126/science.1172104
118.
118. S. Polarz, Adv. Funct. Mater. 21, 3214 (2011).
http://dx.doi.org/10.1002/adfm.201101205
119.
119. L. Manna, E. Scher, and A. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000).
http://dx.doi.org/10.1021/ja003055+
120.
120. F. Wang, R. Tang, and W. E. Buhro, Nano Lett. 8, 3521 (2008).
http://dx.doi.org/10.1021/nl801692g
121.
121. A. Houtepen, R. Koole, D. Vanmaekelbergh, and J. Meeldijk, J. Am. Chem. Soc. 128, 6792 (2006).
http://dx.doi.org/10.1021/ja061644v
122.
122. Q. Pang et al., Chem Mater 17, 5263 (2005).
http://dx.doi.org/10.1021/cm050774k
123.
123. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos, Nat. Mater. 2, 382 (2003).
http://dx.doi.org/10.1038/nmat902
124.
124. J. Q. Hu, Y. Bando, and D. Golberg, Small 1, 95 (2005).
http://dx.doi.org/10.1002/smll.200400013
125.
125. Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, J. Am. Chem. Soc. 125, 16196 (2003).
http://dx.doi.org/10.1021/ja037965d
126.
126. B. Fritzinger, R. K. Capek, K. Lambert, J. C. Martins, and Z. Hens, J. Am. Chem. Soc. 132, 10195 (2010).
http://dx.doi.org/10.1021/ja104351q
127.
127. B. Fritzinger, I. Moreels, P. Lommens, R. Koole, Z. Hens, and J. C. Martins, J. Am. Chem. Soc. 131, 3024 (2009).
http://dx.doi.org/10.1021/ja809436y
128.
128. M. B. Mohamed, C. Burda, and M. A. El-Sayed, Nano Lett. 1, 589 (2001).
http://dx.doi.org/10.1021/nl0155835
129.
129. J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, Science 292, 2060 (2001).
http://dx.doi.org/10.1126/science.1060810
130.
130. B.-R. Hyun, A. C. Bartnik, W.-k. Koh, N. I. Agladze, J. P. Wrubel, A. J. Sievers, C. B. Murray, and F. W. Wise, Nano Lett. 11, 2786 (2011).
http://dx.doi.org/10.1021/nl201115h
131.
131. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).
http://dx.doi.org/10.1021/ja970754m
132.
132. A. Pandey and P. Guyot-Sionnest, Science 322, 929 (2008).
http://dx.doi.org/10.1126/science.1159832
133.
133. L. Carbone et al., Nano Lett. 7, 2942 (2007).
http://dx.doi.org/10.1021/nl0717661
134.
134. P. D. Cozzoli, T. Pellegrino, and L. Manna, Chem. Soc. Rev. 35, 1195 (2006).
http://dx.doi.org/10.1039/b517790c
135.
135. S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, Small 3, 1633 (2007).
http://dx.doi.org/10.1002/smll.200700155
136.
136. K. Becker, J. M. Lupton, J. Muller, A. L. Rogach, D. V. Talapin, H. Weller, and J. Feldmann, Nat. Mater. 5, 777 (2006).
http://dx.doi.org/10.1038/nmat1738
137.
137. M. Sykora, A. Y. Koposov, J. A. Mcguire, R. K. Schulze, O. Tretiak, J. M. Pietryga, and V. I. Klimov, ACS Nano 4, 2021 (2010).
http://dx.doi.org/10.1021/nn100131w
138.
138. S. N. Inamdar, P. P. Ingole, and S. K. Haram, Chemphyschem 9, 2574 (2008).
http://dx.doi.org/10.1002/cphc.200800482
139.
139. J. J. Choi et al., Nano Lett. 9, 3749 (2009).
http://dx.doi.org/10.1021/nl901930g
140.
140. V. Colvin, A. Alivisatos, and J. Tobin, Phys. Rev. Lett. 66, 2786 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.2786
141.
141. J. Jasieniak, M. Califano, and S. Watkins, ACS Nano 5, 5888 (2011).
http://dx.doi.org/10.1021/nn201681s
142.
142. A. M. Munro, B. Zacher, A. Graham, and N. R. Armstrong, ACS Appl. Mater. Int. 2, 863 (2010).
http://dx.doi.org/10.1021/am900834y
143.
143. B. A. Timp and X. Y. Zhu, Surf. Sci. 604, 1335 (2010).
http://dx.doi.org/10.1016/j.susc.2010.04.026
144.
144. R. Cohen, L. Kronik, A. Shanzer, D. Cahen, A. Liu, Y. Rosenwaks, J. K. Lorenz, and A. B. Ellis, J. Am. Chem. Soc. 121, 10545 (1999).
http://dx.doi.org/10.1021/ja9906150
145.
145. M. Soreni-Harari, N. Yaacobi-Gross, D. Steiner, A. Aharoni, U. Banin, O. Millo, and N. Tessler, Nano Lett. 8, 678 (2008).
http://dx.doi.org/10.1021/nl0732171
146.
146. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).
http://dx.doi.org/10.1021/ja0782706
147.
147. F. Xu, X. Ma, C. R. Haughn, J. Benavides, M. F. Doty, and S. G. Cloutier, ACS Nano 5, 9950 (2011).
http://dx.doi.org/10.1021/nn203728t
148.
148. I. J. Kramer, L. Levina, R. Debnath, D. Zhitomirsky, and E. H. Sargent, Nano Lett. 11, 3701 (2011).
http://dx.doi.org/10.1021/nl201682h
149.
149. J. J. Choi, W. N. Wenger, R. S. Hoffman, Y.-F. Lim, J. Luria, J. Jasieniak, J. A. Marohn, and T. Hanrath, Adv. Mater. 23, 3144 (2011).
http://dx.doi.org/10.1002/adma.201100723
150.
150. X. Wang et al., Nat. Photon. 5, 480 (2011).
http://dx.doi.org/10.1038/nphoton.2011.123
151.
151. F. Remacle and R. Levine, Chemphyschem 2, 20 (2001).
http://dx.doi.org/10.1002/1439-7641(20010119)2:1<20::AID-CPHC20>3.0.CO;2-R
152.
152. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, Nature 439, 55 (2006).
http://dx.doi.org/10.1038/nature04414
153.
153. B. Lee, P. Podsiadlo, S. Rupich, D. V. Talapin, T. Rajh, and E. V. Shevchenko, J. Am. Chem. Soc. 131, 16386 (2009).
http://dx.doi.org/10.1021/ja906632b
154.
154. N. J. Tao, Nat. Nano 1, 173 (2006).
http://dx.doi.org/10.1038/nnano.2006.130
155.
155. D. Yu, C. Wang, and P. Guyot-Sionnest, Science 300, 1277 (2003).
http://dx.doi.org/10.1126/science.1084424
156.
156. D. V. Talapin and C. B. Murray, Science 310, 86 (2005).
http://dx.doi.org/10.1126/science.1116703
157.
157. M. Law, J. M. Luther, Q. Song, B. K. Hughes, C. L. Perkins, and A. J. Nozik, J. Am. Chem. Soc. 130, 5974 (2008).
http://dx.doi.org/10.1021/ja800040c
158.
158. J. J. Choi, J. Luria, B.-R. Hyun, A. C. Bartnik, L. Sun, Y.-F. Lim, J. A. Marohn, F. W. Wise, and T. Hanrath, Nano Lett. 10, 1805 (2010).
http://dx.doi.org/10.1021/nl100498e
159.
159. A. Wolcott et al., J. Phys. Chem. Lett. 2, 795 (2011).
http://dx.doi.org/10.1021/jz200080d
160.
160. Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, and M. Law, Nano Lett. 10, 1960 (2010).
http://dx.doi.org/10.1021/nl101284k
161.
161. M. H. Zarghami, Y. Liu, M. Gibbs, E. Gebremichael, C. Webster, and M. Law, ACS Nano 4, 2475 (2010).
http://dx.doi.org/10.1021/nn100339b
162.
162. J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, ACS Nano 2, 271 (2008).
http://dx.doi.org/10.1021/nn7003348
163.
163. S. Kitada, E. Kikuchi, A. Ohno, S. Aramaki, and S. Maenosono, Solid State Commun. 149, 1853 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.07.002
164.
164. Y. Gao, E. Talgorn, M. Aerts, M. T. Trinh, J. M. Schins, A. J. Houtepen, and L. D. A. Siebbeles, Nano Lett. 11, 5471 (2011).
http://dx.doi.org/10.1021/nl203235u
165.
165. G. Sarasqueta, K. R. Choudhury, and F. So, Chem. Mater. 22, 3496 (2010).
http://dx.doi.org/10.1021/cm1006229
166.
166. G. I. Koleilat, L. Levina, H. Shukla, S. H. Myrskog, S. Hinds, A. G. Pattantyus-Abraham, and E. H. Sargent, ACS Nano 2, 833 (2008).
http://dx.doi.org/10.1021/nn800093v
167.
167. K. S. Jeong et al., ACS Nano 6, 89 (2011).
168.
168. V. Wood, M. J. Panzer, D. Bozyigit, Y. Shirasaki, I. Rousseau, S. Geyer, M. G. Bawendi, and V. Bulović, Nano Lett. 11, 2927 (2011).
http://dx.doi.org/10.1021/nl2013983
169.
169. B.-R. Hyun, A. C. Bartnik, L. Sun, T. Hanrath, and F. W. Wise, Nano Lett. 11, 2126 (2011).
http://dx.doi.org/10.1021/nl200718w
170.
170. L. Etgar, J. H. Park, C. Barolo, M. K. Nazeeruddin, G. Viscardi, and M. Graetzel, ACS Appl. Mater. Int. 3, 3264 (2011).
http://dx.doi.org/10.1021/am200811c
171.
171. M. V. Kovalenko, M. Scheele, and D. V. Talapin, Science 324, 1417 (2009).
http://dx.doi.org/10.1126/science.1170524
172.
172. D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, Nature 428, 299 (2004).
http://dx.doi.org/10.1038/nature02389
173.
173. R. Tangirala, J. L. Baker, A. P. Alivisatos, and D. J. Milliron, Angew. Chem. Int. Ed. 49, 2878 (2010).
http://dx.doi.org/10.1002/anie.200906642
174.
174. A. Nag, M. V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, J. Am. Chem. Soc. 133, 10612 (2011).
http://dx.doi.org/10.1021/ja2029415
175.
175. H. Zhang, B. Hu, L. Sun, R. Hovden, F. W. Wise, D. A. Muller, and R. D. Robinson, Nano Lett. 11, 5356 (2011).
http://dx.doi.org/10.1021/nl202892p
176.
176. J. Tang et al., Nat. Mater. 10, 765 (2011).
http://dx.doi.org/10.1038/nmat3118
177.
177. A. Pourret, P. Guyot-Sionnest, and J. W. Elam, Adv. Mater. 21, 232 (2008).
http://dx.doi.org/10.1002/adma.200801313
178.
178. E. M. Likovich, R. Jaramillo, K. J. Russell, S. Ramanathan, and V. Narayanamurti, Adv. Mater. 23, 4521 (2011).
http://dx.doi.org/10.1002/adma.201101782
179.
179. R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, and M. Law, ACS Nano 5, 8175 (2011).
http://dx.doi.org/10.1021/nn2033117
180.
180. Y. Liu, M. Gibbs, C. L. Perkins, J. Tolentino, M. H. Zarghami, J. Bustamante, and M. Law, Nano Lett. 11, 5349 (2011).
http://dx.doi.org/10.1021/nl2028848
181.
181. I. Gur, N. Fromer, M. Geier, and A. Alivisatos, Science 310, 462 (2005).
http://dx.doi.org/10.1126/science.1117908
182.
182. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y. C. Cao, W. A. Bassett, H. Wu, H. Fan, and H. Weller, J. Am. Chem. Soc. 133, 14484 (2011).
http://dx.doi.org/10.1021/ja204310b
183.
183. H. Wu, F. Bai, Z. Sun, R. E. Haddad, D. M. Boye, Z. Wang, J. Y. Huang, and H. Fan, J. Am. Chem. Soc. 132, 12826 (2010).
http://dx.doi.org/10.1021/ja105255d
184.
184. L. Cademartiri, A. Ghadimi, and G. A. Ozin, Acc. Chem. Res. 41, 1820 (2008).
http://dx.doi.org/10.1021/ar800158d
185.
185. M. Drndicì, M. V. Jarosz, N. Y. Morgan, M. A. Kastner, and M. G. Bawendi, J. Appl. Phys. 92, 7498 (2002).
http://dx.doi.org/10.1063/1.1523148
186.
186. B. W. Goodfellow, R. N. Patel, M. G. Panthani, D.-M. Smilgies, and B. A. Korgel, J. Phys. Chem. C 115, 6397 (2011).
http://dx.doi.org/10.1021/jp2004908
187.
187. P. Liljeroth, K. Overgaag, A. Urbieta, B. Grandidier, S. G. Hickey, and D. l. Vanmaekelbergh, Phys. Rev. Lett. 97, 096803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.096803
188.
188. T. S. Mentzel, V. J. Porter, S. Geyer, K. MacLean, M. G. Bawendi, and M. A. Kastner, Phys. Rev. B 77, 075316 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075316
189.
189. S. J. Baik, K. Kim, K. S. Lim, S. Jung, Y.-C. Park, D. G. Han, S. Lim, S. Yoo, and S. Jeong, J. Phys. Chem. C. 115, 607 (2011).
http://dx.doi.org/10.1021/jp1084668
190.
190. A. Dong, J. Chen, P. M. Vora, J. M. Kikkawa, and C. B. Murray, Nature 466, 474 (2010).
http://dx.doi.org/10.1038/nature09188
191.
191. E. J. D. Klem, H. Shukla, S. Hinds, D. D. MacNeil, L. Levina, and E. H. Sargent, Appl. Phys. Lett. 92, 212105 (2008).
http://dx.doi.org/10.1063/1.2917800
192.
192. V. J. Porter, S. Geyer, J. E. Halpert, M. A. Kastner, and M. G. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
http://dx.doi.org/10.1021/jp710173q
193.
193. H. E. Romero and M. Drndic, Phys. Rev. Lett. 95, 156801 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.156801
194.
194. M. A. van Huis, L. T. Kunneman, K. Overgaag, Q. Xu, G. Pandraud, H. W. Zandbergen, and D. Vanmaekelbergh, Nano Lett. 8, 3959 (2008).
http://dx.doi.org/10.1021/nl8024467
195.
195. W. J. Baumgardner, J. J. Choi, K. Bian, L. Fitting Kourkoutis, D.-M. Smilgies, M. O. Thompson, and T. Hanrath, ACS Nano 5, 7010 (2011).
http://dx.doi.org/10.1021/nn201588p
196.
196. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Science 277, 1978 (1997).
http://dx.doi.org/10.1126/science.277.5334.1978
197.
197. A. Tao, P. Sinsermsuksakul, and P. Yang, Nat. Nano 2, 435 (2007).
http://dx.doi.org/10.1038/nnano.2007.189
198.
198. A. R. Tao, J. Huang, and P. Yang, Acc. Chem. Res. 41, 1662 (2008).
http://dx.doi.org/10.1021/ar8000525
199.
199. P. Podsiadlo, B. Lee, V. B. Prakapenka, G. V. Krylova, R. D. Schaller, A. Demortiere, and E. V. Shevchenko, Nano Lett. 11, 579 (2011).
http://dx.doi.org/10.1021/nl103587u
200.
200. D. C. Sayle et al., ACS Nano 2, 1237 (2008).
http://dx.doi.org/10.1021/nn800065g
201.
201. S. Hegedus, Prog. Photovoltaics 14, 393 (2006).
http://dx.doi.org/10.1002/pip.704
202.
202. X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, J. Phys. Chem. B 105, 3353 (2001).
http://dx.doi.org/10.1021/jp0102062
203.
203. R. J. Macfarlane, B. Lee, M. R. Jones, N. Harris, G. C. Schatz, and C. A. Mirkin, Science 334, 204 (2011).
http://dx.doi.org/10.1126/science.1210493
204.
204. E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray, Nature 439, 55 (2006).
http://dx.doi.org/10.1038/nature04414
205.
205. W. H. Evers, H. Friedrich, L. Filion, M. Dijkstra, and D. Vanmaekelbergh, Angew. Chem. Int. Ed. 48, 9655 (2009).
http://dx.doi.org/10.1002/anie.200904821
206.
206. Z. Quan and J. Fang, Nano Today 5, 390 (2010).
http://dx.doi.org/10.1016/j.nantod.2010.08.011
207.
207. K. Miszta et al., Nat. Mater. 10, 872 (2011).
http://dx.doi.org/10.1038/nmat3121
208.
208. Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Nat. Nanotechnol. 6, 580 (2011).
http://dx.doi.org/10.1038/nnano.2011.121
209.
209. M. P. Pileni, J. Phys. Chem. B 105, 3358 (2001).
http://dx.doi.org/10.1021/jp0039520
210.
210. N. A. Kotov, Nanoparticle Assemblies and Superstructures (CRC Press, Boca Raton, 2006).
211.
211. K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, Small 5, 1600 (2009).
http://dx.doi.org/10.1002/smll.200900358
212.
212. W. H. Evers, B. de Nijs, L. Filion, S. Castillo, M. Dijkstra, and D. Vanmaekelbergh, Nano Lett. 10, 4235 (2010).
http://dx.doi.org/10.1021/nl102705p
213.
213. B. Korgel and D. Fitzmaurice, Phys. Rev. B 59, 14191 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.14191
214.
214. R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez, and A. Wilkinson, Acc. Chem. Res. 32, 397 (1999).
http://dx.doi.org/10.1021/ar970239t
215.
215. S. C. Glotzer, M. J. Solomon, and N. A. Kotov, AIChE J. 50, 2978 (2004).
http://dx.doi.org/10.1002/aic.10413
216.
216. J. Henzie, M. Grünwald, A. Widmer-Cooper, P. L. Geissler, and P. Yang, Nat. Mater. 11, 131 (2011).
http://dx.doi.org/10.1038/nmat3178
217.
217. P. F. Damasceno, M. Engel, and S. C. Glotzer, ACS Nano 6, 609 (2011).
http://dx.doi.org/10.1021/nn204012y
218.
218. K. Bian, J. J. Choi, A. Kaushik, P. Clancy, D.-M. Smilgies, and T. Hanrath, ACS Nano 5, 2815 (2011).
http://dx.doi.org/10.1021/nn103303q
219.
219. E. Bain, Trans. Am. Inst. Miner. Met. Eng. 70, 25 (1924).
220.
220. J. J. Choi, C. R. Bealing, K. Bian, K. J. Hughes, W. Zhang, D.-M. Smilgies, R. G. Hennig, J. R. Engstrom, and T. Hanrath, J. Am. Chem. Soc. 133, 3131 (2011).
http://dx.doi.org/10.1021/ja110454b
221.
221. Y. Zhang, F. Lu, D. van der Lelie, and O. Gang, Phys. Rev. Lett. 107, (2011).
222.
222. M. C. Troparevsky, K. Zhao, D. Xiao, A. G. Eguiluz, and Z. Zhang, Phys. Rev. B 82, 045413 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045413
223.
223. S. Auer and D. Frenkel, Nature 413, 711 (2001).
http://dx.doi.org/10.1038/35099513
224.
224. M. Shim and P. Guyot-Sionnest, J. Chem. Phys. 111, 6955 (1999).
http://dx.doi.org/10.1063/1.479988
225.
225. M. Klokkenburg, A. J. Houtepen, R. Koole, J. W. J. de Folter, B. H. Erne, E. van Faassen, and D. Vanmaekelbergh, Nano Lett. 7, 2931 (2007).
http://dx.doi.org/10.1021/nl0714684
226.
226. T. Hanrath, D. Veldman, J. J. Choi, C. G. Christova, M. M. Wienk, and R. A. J. Janssen, ACS Appl. Mater. Int. 1, 244 (2009).
http://dx.doi.org/10.1021/am8001583
227.
227. D. V. Talapin, E. V. Shevchenko, C. B. Murray, A. V. Titov, and P. Kral, Nano Lett. 7, 1213 (2007).
http://dx.doi.org/10.1021/nl070058c
228.
228. I. Moreels, B. Fritzinger, J. Martins, and Z. Hens, J. Am. Chem. Soc. 130, 15081 (2008).
http://dx.doi.org/10.1021/ja803994m
229.
229. C. Fang, M. A. van Huis, D. Vanmaekelbergh, and H. W. Zandbergen, ACS Nano 4, 211 (2010).
http://dx.doi.org/10.1021/nn9013406
230.
230. P. Bartlett, R. H. Ottewill, and P. N. Pusey, Phys. Rev. Lett. 68, 3801 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.3801
231.
231. D. Dunphy, H. Fan, X. Li, J. Wang, and C. J. Brinker, Langmuir 24, 10575 (2008).
http://dx.doi.org/10.1021/la802120n
232.
232. B. Abécassis, F. Testard, and O. Spalla, Phys. Rev. Lett. 100, 115504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.115504
233.
233. Z. Jiang, X.-M. Lin, M. Sprung, S. Narayanan, and J. Wang, Nano Lett. 10, 799 (2010).
http://dx.doi.org/10.1021/nl9029048
234.
234. T. Hanrath, J. J. Choi, and D. Smilgies, ACS Nano 3, 2975 (2009).
http://dx.doi.org/10.1021/nn901008r
235.
235. S. Narayanan, J. Wang, and X. Lin, Phys. Rev. Lett. 93, 135503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135503
236.
236. V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, J. Am. Chem. Soc. 114, 5221 (1992).
http://dx.doi.org/10.1021/ja00039a038
237.
237. Z. Y. Tang, Z. L. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov, Science 314, 274 (2006).
http://dx.doi.org/10.1126/science.1128045
238.
238. S. Coe-Sullivan, J. S. Steckel, W. K. Woo, M. G. Bawendi, and V. Bulovic, Adv. Funct. Mater. 15, 1117 (2005).
http://dx.doi.org/10.1002/adfm.200400468
239.
239. M. B. Sigman, A. E. Saunders, and B. A. Korgel, Langmuir 20, 978 (2004).
http://dx.doi.org/10.1021/la035405m
240.
240. L. Li and R. F. Ismagilov, Annu. Rev. Biophys. 39, 139 (2010).
http://dx.doi.org/10.1146/annurev.biophys.050708.133630
241.
241. D. Talapin, E. Shevchenko, A. Kornowski, N. Gaponik, M. Haase, A. Rogach, and H. Weller, Adv. Mater. 13, 1868 (2001).
http://dx.doi.org/10.1002/1521-4095(200112)13:24<1868::AID-ADMA1868>3.0.CO;2-0
242.
242. M. I. Bodnarchuk, L. Li, A. Fok, S. Nachtergaele, R. F. Ismagilov, and D. V. Talapin, J. Am. Chem. Soc. 133, 8956 (2011).
http://dx.doi.org/10.1021/ja201129n
243.
243. S. Maenosono, T. Okubo, and Y. Yamaguchi, J. Nanoparticle Res. 5, 5 (2003).
http://dx.doi.org/10.1023/A:1024418931756
244.
244. C. B. Murray, S. H. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, IBM J. Res. Dev. 45, 47 (2001).
http://dx.doi.org/10.1147/rd.451.0047
246.
246. D. Smith, B. Goodfellow, D. Smilgies, and B. Korgel, J. Am. Chem. Soc. 131, 3281 (2009).
http://dx.doi.org/10.1021/ja8085438
247.
247. T. Vossmeyer, E. DeIonno, and J. R. Heath, Angew. Chem. Int. Ed. 36, 1080 (1997).
http://dx.doi.org/10.1002/anie.199710801
248.
248. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, Nano Lett. 9, 2849 (2009).
http://dx.doi.org/10.1021/nl900961r
249.
249. H. Noh, C. Choi, A. M. Hung, S. Jin, and J. N. Cha, ACS Nano 4, 5076 (2010).
http://dx.doi.org/10.1021/nn101593d
250.
250. Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, and A. P. Alivisatos, Nano Lett. 4, 1093 (2004).
http://dx.doi.org/10.1021/nl049488i
251.
251. D. A. R. Barkhouse, R. Debnath, I. J. Kramer, D. Zhitomirsky, A. G. Pattantyus-Abraham, L. Levina, L. Etgar, M. Grätzel, and E. H. Sargent, Adv. Mater. 23, 3134 (2011).
http://dx.doi.org/10.1002/adma.201101065
252.
252. K. S. Leschkies, A. G. Jacobs, D. J. Norris, and E. S. Aydil, Appl. Phys. Lett. 95, 193103 (2009).
http://dx.doi.org/10.1063/1.3258490
253.
253. P. Ball, The Self-Made Tapestry: Pattern Formation in Nature (Oxford University Press, Oxford, 1998).
254.
254. E. H. Sargent, IEEE J. Sel. Top. Quantum Electron. 14, 1223 (2008).
http://dx.doi.org/10.1109/JSTQE.2008.925766
255.
255. J. M. Luther, M. Law, M. C. Beard, Q. Song, M. O. Reese, R. J. Ellingson, and A. J. Nozik, Nano Lett. 8, 3488 (2008).
http://dx.doi.org/10.1021/nl802476m
256.
256. C. J. Brinker, Y. F. Lu, A. Sellinger, and H. Y. Fan, Adv. Mater. 11, 579 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
257.
257. E. Talgorn, M. A. de Vries, L. D. A. Siebbeles, and A. J. Houtepen, ACS Nano 5, 3552 (2011).
http://dx.doi.org/10.1021/nn2009134
258.
258. B. Prevo and O. Velev, Langmuir 20, 2099 (2004).
http://dx.doi.org/10.1021/la035295j
259.
259. M. I. Bodnarchuk, M. V. Kovalenko, S. Pichler, G. Fritz-Popovski, G. Hesser, and W. Heiss, ACS Nano 4, 423 (2010).
http://dx.doi.org/10.1021/nn901284f
260.
260. E. Tekin, P. J. Smith, S. Hoeppener, A. M. J. van den Berg, A. S. Susha, A. L. Rogach, J. Feldmann, and U. S. Schubert, Adv. Funct. Mater. 17, 23 (2007).
http://dx.doi.org/10.1002/adfm.200600587
261.
261. M. Böberl, M. V. Kovalenko, S. Gamerith, E. J. W. List, and W. Heiss, Adv. Mater. 19, 3574 (2007).
http://dx.doi.org/10.1002/adma.200700111
262.
262. V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi, and B. A. Korgel, Energy Environ. Sci. 3, 1600 (2010).
http://dx.doi.org/10.1039/c0ee00098a
263.
263. I. W. Lenggoro, H. M. Lee, and K. Okuyama, J. Colloid Interf. Sci. 303, 124 (2006).
http://dx.doi.org/10.1016/j.jcis.2006.07.033
264.
264. B. Dabbousi, C. Murray, M. Rubner, and M. Bawendi, Chem. Mater. 6, 216 (1994).
http://dx.doi.org/10.1021/cm00038a020
265.
265. K. Lambert, R. K. Capek, M. I. Bodnarchuk, M. V. Kovalenko, D. Van Thourhout, W. Heiss, and Z. Hens, Langmuir 26, 7732 (2010).
http://dx.doi.org/10.1021/la904474h
266.
266. A. Dong, X. Ye, J. Chen, and C. B. Murray, Nano Lett. 11, 1804 (2011).
http://dx.doi.org/10.1021/nl200468p
267.
267. S. Pichler, M. I. Bodnarchuk, M. V. Kovalenko, M. Yarema, G. Springholz, D. V. Talapin, and W. Heiss, ACS Nano 5, 1703 (2011).
http://dx.doi.org/10.1021/nn200265e
268.
268. S. Harfenist, Z. Wang, M. Alvarez, I. Vezmar, and R. Whetten, J. Phys. Chem. 100, 13904 (1996).
http://dx.doi.org/10.1021/jp961764x
269.
269. H. Friedrich et al., Nano Lett. 9, 2719 (2009).
http://dx.doi.org/10.1021/nl901212m
270.
270. P. Guyot-Sionnest, in AIChE 2011 Annual Meeting, Minneapolis, Minnesota, 2011 (unpublished).
271.
271. I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.469
272.
272. D.-K. Ko, J. J. Urban, and C. B. Murray, Nano Lett. 10, 1842 (2010).
http://dx.doi.org/10.1021/nl100571m
273.
273. A. L. Efros and B. I. Shklovskii, J. Phys. C 8, L49 (1975).
http://dx.doi.org/10.1088/0022-3719/8/4/003
274.
274. B. Wehrenberg, D. Yu, J. Ma, and P. Guyot-Sionnest, J. Phys. Chem. B 109, 20192 (2005).
http://dx.doi.org/10.1021/jp053621t
275.
275. A. J. Houtepen, D. Kockmann, and D. Vanmaekelbergh, Nano Lett. 8, 3516 (2008).
http://dx.doi.org/10.1021/nl8020347
276.
276. D. Ginger and N. Greenham, J. Appl. Phys. 87, 1361 (2000).
http://dx.doi.org/10.1063/1.372021
277.
277. P. Nagpal and V. I. Klimov, Nat. Commun. 2, 486 (2011).
http://dx.doi.org/10.1038/ncomms1492
278.
278. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. Sargent, Nature 442, 180 (2006).
http://dx.doi.org/10.1038/nature04855
279.
279. D. A. R. Barkhouse, A. G. Pattantyus-Abraham, L. Levina, and E. H. Sargent, ACS Nano 2, 2356 (2008).
http://dx.doi.org/10.1021/nn800471c
280.
280. I. Kramer and E. H. Sargent, ACS Nano 5, 8506 (2011).
http://dx.doi.org/10.1021/nn203438u
281.
281. J. Lee, M. Kovalenko, J. Huang, D. Chung, and T. Dmitri, Nature 6, 348 (2011).
282.
282. E. Talgorn et al., Nat. Nanotech. 6, 733 (2011).
http://dx.doi.org/10.1038/nnano.2011.159
283.
283. J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. R. Kagan, and C. B. Murray, Nat. Mater. 6, 115 (2007).
http://dx.doi.org/10.1038/nmat1826
284.
284. J. R. Heath, Nature 445, 492 (2007).
http://dx.doi.org/10.1038/445492a
285.
285. J. Chen, A. Dong, J. Cai, X. Ye, Y. Kang, and C. Murray, Nano Lett. 10, 5103 (2010).
http://dx.doi.org/10.1021/nl103568q
286.
286. H. Döllefeld, H. Weller, and A. Eychmuller, J. Phys. Chem. B 106, 5604 (2002).
http://dx.doi.org/10.1021/jp013234t
287.
287. K. Overgaag, P. Liljeroth, B. Grandidier, and D. Vanmaekelbergh, ACS Nano 2, 600 (2008).
http://dx.doi.org/10.1021/nn7003876
288.
288. D. V. Talapin and Y. Yin, J. Mater. Chem. 21, 11454 (2011).
http://dx.doi.org/10.1039/c1jm90095a
289.
289. A. Chemseddine and H. Weller, Ber. Bunsenges. Phys. Chem. 97, 636 (1993).
290.
290. A. M. Al-Somali, K. M. Krueger, J. C. Falkner, and V. L. Colvin, Anal. Chem. 76, 5903 (2004).
http://dx.doi.org/10.1021/ac049355h
291.
291. R. P. Carney, J. Y. Kim, H. Qian, R. Jin, H. Mehenni, F. Stellacci, and O. M. Bakr, Nat. Commun. 2, 335 (2011).
http://dx.doi.org/10.1038/ncomms1338
292.
292. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002).
http://dx.doi.org/10.1038/nature01217
293.
293. D. Zhitomirsky, I. J. Kramer, A. J. Labelle, A. Fischer, R. Debnath, J. Pan, O. M. Bakr, and E. H. Sargent, Nano Lett. 12, 1007 (2012).
http://dx.doi.org/10.1021/nl2041589
294.
294. F. Hetsch, X. Xu, H. Wang, S. V. Kershaw, and A. L. Rogach, J. Phys. Chem. Lett. 2, 1879 (2011).
http://dx.doi.org/10.1021/jz200802j
295.
295. S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature 436, 91 (2005).
http://dx.doi.org/10.1038/nature03832
296.
296. G. M. Dalpian and J. R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.226802
297.
297. C. A. Wolden, J. Kurtin, J. B. Baxter, I. Repins, S. E. Shaheen, J. T. Torvik, A. A. Rockett, V. M. Fthenakis, and E. S. Aydil, J. Vac. Sci. Technol. A 29, 030801 (2011).
http://dx.doi.org/10.1116/1.3569757
298.
298. C. Wadia, A. P. Alivisatos, and D. M. Kammen, Environ. Sci. Technol. 43, 2072 (2009).
http://dx.doi.org/10.1021/es8019534
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/30/3/10.1116/1.4705402
Loading
/content/avs/journal/jvsta/30/3/10.1116/1.4705402
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/30/3/10.1116/1.4705402
2012-05-03
2015-08-03

Abstract

The prospect of designing novel materials with electrical, optical, and magnetic properties by design has intrigued scientists and engineers for years. Building blocks for such “artificial solids” have emerged from recent advances in nanomaterial synthesis, characterization, and emerging understanding of their size-dependent properties. Colloidalsemiconductor nanocrystal quantum dots (NQDs) stand out as an intellectually intriguing and experimentally advantageous system for the fundamental study of artificial solids and their technological development. The authors review the rapid evolution of artificial solids from an early theoretical concept towards the refined control of metamaterials with programmable electronic structure and their potential commercial applications, in particular, in next-generation energy technologies. The review is organized around the three independently adjustable parameters of artificial solids: (i) the electronic structure of NQD as artificial atom by tailoring the quantum confinement of the wave function, (ii) the interdot coupling as an artificial bond, and (iii) the self-assembly of NQDs into ordered superstructures as artificial crystals. The authors review elementary aspects of colloidal NQD synthesis as well as pertinent advances which have led to refined control over the NQD size, shape, and composition. Coupling between NQDs is reviewed in the context of an artificial bond; we summarize chemical and physical approaches to address the seemingly contradictory requirements of coupling nanostructures while preserving the effects of quantum-confinement. The authors review the self-assembly of NQDs into ordered superstructures in analogy to atomic crystal growth and discuss fundamental interactions between NQD and how they can be modulated to direct the growth of superlattices with predefined structures. Collectively, the experimental control over the properties of the artificial atom, bond, and crystal enable the systematic exploration of the electronic phase diagram of NQD solids. From an applied perspective, these advances have created an immensely fertile opportunity space technological applications of artificial solids in optoelectronic devices. The authors conclude with a perspective on three specific unresolved challenges ahead: (i) knowledge gaps concerning the detailed physiochemical nature of the NQD surface, (ii) limitations posed by the inherent inhomogeneity within the ensemble of NQDs, (iii) the trueelectronic structure of NQD solids, and (iv) the connection between NQD model systems in the laboratory and commercially deployable NQD technologies.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/30/3/1.4705402.html;jsessionid=96mpf6fs63iac.x-aip-live-03?itemId=/content/avs/journal/jvsta/30/3/10.1116/1.4705402&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Colloidal nanocrystal quantum dot assemblies as artificial solids
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/30/3/10.1116/1.4705402
10.1116/1.4705402
SEARCH_EXPAND_ITEM