Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/30/4/10.1116/1.4728205
1.
1. J. H. Zhao, A. H. Wang, and M. A. Green, Prog. Photovoltaics 7, 471 (1999).
http://dx.doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
2.
2. M. A. Green, Prog. Photovoltaics 17, 183 (2009).
http://dx.doi.org/10.1002/pip.892
3.
3. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31, 711 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
4.
4. M. A. Green, IEEE Trans. Electron Devices 31, 671 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21588
5.
5. M. J. Kerr, A. Cuevas, and P. Campbell, Prog. Photovoltaics 11, 97 (2003).
http://dx.doi.org/10.1002/pip.464
6.
6. M. A. Green, Silicon Solar Cells: Advanced Principles and Practice (Bridge Printery, Sydney, Australia, 1995).
7.
7. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
8.
8. R. M. Swanson, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, 3–7 January 2005 (IEEE, New York, 2005).
9.
9. S. W. Glunz et al., Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
10.
10. A. G. Aberle, Prog. Photovoltaics 8, 473 (2000).
http://dx.doi.org/10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
11.
11. Y. Tsunomura, T. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, and M. Tanaka, Sol. Energy Mater. Sol. Cells 93, 670 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.02.037
12.
12. R. Hezel and K. Jaeger, J. Electrochem. Soc. 136, 518 (1989).
http://dx.doi.org/10.1149/1.2096673
13.
13. G. Agostinelli, P. Vitanov, Z. Alexieva, A. Harizanova, H. F. W. Dekkers, S. De Wolf, and G. Beaucarne, Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, 7–11 June 2004 (unpublished).
14.
14. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 89, 042112 (2006).
http://dx.doi.org/10.1063/1.2240736
15.
15. G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. De Wolf, and G. Beaucarne, Sol. Energy Mater. Sol. Cells 90, 3438 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.04.014
16.
16. B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys 104, 044903 (2008).
http://dx.doi.org/10.1063/1.2963707
17.
17. B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 113703 (2008).
http://dx.doi.org/10.1063/1.3021091
18.
18. M. Hofmann, S. Janz, C. Schmidt, S. Kambor, D. Suwito, N. Kohn, J. Rentsch, R. Preu, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 93, 1074 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.056
19.
19. J. Benick, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, O. Schultz, and S. W. Glunz, Appl. Phys. Lett. 92, 253504 (2008).
http://dx.doi.org/10.1063/1.2945287
20.
20. W. M. M. Kessels and M. Putkonen, MRS Bull. 36, 907 (2011).
http://dx.doi.org/10.1557/mrs.2011.239
21.
21. P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012).
http://dx.doi.org/10.1116/1.3670745
22.
22. W. Shockley and W. T. J. Read, Phys. Rev. 87, 835 (1952).
http://dx.doi.org/10.1103/PhysRev.87.835
23.
23. R. N. Hall, Phys. Rev. 87, 387 (1952).
http://dx.doi.org/10.1103/PhysRev.87.387
24.
24. S. Rein, Lifetime Spectroscopy (Springer, Berlin, 2004).
25.
25. A. G. Aberle, Crystalline Silicon Solar Cells: Advanced Surface Passivation and Analysis (University of New South Wales, Sydney, Australia, 1999).
26.
26. R. B. M. Girisch, R. P. Mertens, and R. F. de Keersmaecker, IEEE Trans. Electron Devices 25, 203 (1988).
http://dx.doi.org/10.1109/16.2441
27.
27. A. G. Aberle, S. Glunz, and W. Warta, Sol. Energy Mater. Sol. Cells 29, 175 (1993).
http://dx.doi.org/10.1016/0927-0248(93)90075-E
28.
28. S. W. Glunz, D. Biro, S. Rein, and W. Warta, J. Appl. Phys. 86, 683 (1999).
http://dx.doi.org/10.1063/1.370784
29.
29. S. Olibet, E. Vallat-Sauvain, and C. Ballif, Phys. Rev. B 76, 035326 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.035326
30.
30. A. B. Sproul, M. A. Green, A. W. Stephens, J. Appl. Phys. 72, 4161 (1992).
http://dx.doi.org/10.1063/1.350782
31.
31. D. Macdonald and A. Cuevas, Sol. Energy 76, 255 (2004).
http://dx.doi.org/10.1016/j.solener.2003.08.019
32.
32. R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996).
http://dx.doi.org/10.1063/1.117723
33.
33. H. Nagel, C. Berge, and A. G. Aberle, J. Appl. Phys. 86, 6218 (1999).
http://dx.doi.org/10.1063/1.371633
34.
34. G. Coletti, R. Kvande, V. D. Mihailetchi, L. J. Geerlings, L. Arnberg, and E. J. Vrelid, J. Appl. Phys. 104, 104913 (2008).
http://dx.doi.org/10.1063/1.3021355
35.
35. S. W. Glunz, S. Rein, J. Y. Lee, and W. Warta, J. Appl. Phys. 90, 2397 (2001).
http://dx.doi.org/10.1063/1.1389076
36.
36. J. Schmidt and K. Bothe, Phys. Rev. B 69, 024107 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.024107
37.
37. D. Macdonald, F. Rougieux, A. Cuevas, B. Lim, J. Schmidt, M. Di Sabatino, and L. Geerlings, J. Appl. Phys. 105, 093704 (2009).
http://dx.doi.org/10.1063/1.3121208
38.
38. B. Lim, V. V. Voronkov, R. Falster, K. Bothe, and J. Schmidt, Appl. Phys. Lett. 98, 162104 (2011).
http://dx.doi.org/10.1063/1.3581215
39.
39. M. J. Kerr and A. Cuevas, J. Appl. Phys. 91, 2473 (2002).
http://dx.doi.org/10.1063/1.1432476
40.
40. J. Benick, A. Richter, M. Hermle, and S. W. Glunz, Phys. Status Solidi (RRL) 3, 233 (2009).
http://dx.doi.org/10.1002/pssr.200903209
41.
41. A. Stesmans and V. V. Afanas’ev, Appl. Phys. Lett. 80, 1957 (2002).
http://dx.doi.org/10.1063/1.1448169
42.
42. A. G. Aberle, S. Glunz, and W. Warta, J. Appl. Phys. 71, 4422 (1992).
http://dx.doi.org/10.1063/1.350782
43.
43. M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys. 90, 2057 (2001).
http://dx.doi.org/10.1063/1.1385803
44.
44. O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, Prog. Photovoltaics 16, 317 (2008).
http://dx.doi.org/10.1002/pip.814
45.
45. J. Benick, K. Zimmermann, J. Spiegelman, M. Hermle, and S. W. Glunz, Prog. Photovoltaics 19, 361 (2011).
http://dx.doi.org/10.1002/pip.1020
46.
46. M. L. Reed and J. D. Plummer, J. Appl. Phys. 63, 5776 (1988).
http://dx.doi.org/10.1063/1.340317
47.
47. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, Appl. Phys. Lett. 55, 1363 (1989).
http://dx.doi.org/10.1063/1.101596
48.
48. M. J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 35 (2002).
http://dx.doi.org/10.1088/0268-1242/17/1/306
49.
49. S. Mack, A. Wolf, A. Walczak, B. Thaidigsmann, E. Allan Wotke, J. J. Spiegelman, R. Preu, and D. Biro, Sol. Energy Mater. Sol. Cells 95, 2570 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.03.002
50.
50. W. D. Eades and R. M. Swanson, J. Appl. Phys. 58, 4267 (1985).
http://dx.doi.org/10.1063/1.335562
51.
51. B. Hoex, F. J. J. Peeters, M. Creatore, M. A. Blauw, W. M. M. Kessels, and M. C. M. van de Sanden, J. Vac. Sci. Technol. A 24, 1823 (2006).
http://dx.doi.org/10.1116/1.2232580
52.
52. G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi (RRL) 5, 22 (2011).
http://dx.doi.org/10.1002/pssr.201004378
53.
53. V. D. Mihailetchi, Y. Komatsu, and L. J. Geerligs, Appl. Phys. Lett. 92, 063510 (2008).
http://dx.doi.org/10.1063/1.2870202
54.
54. S. Bordihn, P. Engelhart, V. Mertens, G. Kesser, D. Köhn, G. Dingemans, M. M. Mandoc, J. W. Müller, and W. M. M. Kessels, Energy Procedia 8, 654 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.197
55.
55. C. Leguijt et al., Sol. Energy Mater. Sol. Cells 40, 297 (1996).
http://dx.doi.org/10.1016/0927-0248(95)00155-7
56.
56. J. Schmidt and A. Cuevas, J. Appl. Phys. 85, 3626 (1999).
http://dx.doi.org/10.1063/1.369725
57.
57. M. J. Kerr and A. Cuevas, Semicond. Sci. Technol. 17, 166 (2002).
http://dx.doi.org/10.1088/0268-1242/17/2/314
58.
58. S. de Wolf, G. Agostinelli, G. Beaucarne, and P. Vitanov, J. Appl. Phys. 97, 063303 (2005).
http://dx.doi.org/10.1063/1.1861138
59.
59. A. G. Aberle and R. Hezel, Prog. Photovoltaics 5, 29 (1997).
http://dx.doi.org/10.1002/(SICI)1099-159X(199701/02)5:1<29::AID-PIP149>3.0.CO;2-M
60.
60. B. Hoex, A. J. M. van Erven, R. C. M. Bosch, W. T. M. Stals, M. D. Bijker, P. J. van den Oever, W. M. M. Kessels, and M. C. M. van de Sanden, Prog. Photovoltaics 13, 705 (2005).
http://dx.doi.org/10.1002/pip.628
61.
61. J. Hong, W. M. M. Kessels, W. J. Soppe, W. W. Weeber, W. M. Arnoldbik, and M. C. M. van de Sanden, J. Vac. Sci. Technol. B 21, 2123 (2003).
http://dx.doi.org/10.1116/1.1609481
62.
62. F. Duerinckx and J. Szlufcik, Sol. Energy Mater. Sol. Cells 72, 231 (2002).
http://dx.doi.org/10.1016/S0927-0248(01)00170-2
63.
63. M. I. Bertoni et al., Prog. Photovoltaics 19, 187 (2010).
http://dx.doi.org/10.1002/pip.1008
64.
64. W. L. Warren, J. Kanicki, J. Robertson, E. H. Poindexter, and P. J. McWhorter, J. Appl. Phys. 74, 4034 (1993).
http://dx.doi.org/10.1063/1.355315
65.
65. S. E. Curry, P. M. Lenahan, D. T. Krick, J. Kanicki, and C. T. Kirk, Appl. Phys. Lett. 56, 1359 (1990).
http://dx.doi.org/10.1063/1.102514
66.
66. H. Mäckel and R. Lüdemann, J. Appl. Phys. 92, 2602 (2002).
http://dx.doi.org/10.1063/1.1495529
67.
67. S. Dauwe, L. Mittelstädt, A. Metz, and R. Hezel, Prog. Photovoltaics 10, 271 (2002).
http://dx.doi.org/10.1002/pip.420
68.
68. G. Dingemans, M. M. Mandoc, S. Bordihn, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 98, 222102 (2011).
http://dx.doi.org/10.1063/1.3595940
69.
69. S. Mack, A. Wolf, C. Brosinsky, S. Schmeisser, A. Kimmerle, P. Saint-Cast, M. Hofmann, and D. Biro, IEEE J. Photovoltaics 1, 135 (2011).
http://dx.doi.org/10.1109/JPHOTOV.2011.2173299
70.
70. M. Schaper, J. Schmidt, H. Plagwitz, and R. Brendel, Prog. Photovoltaics 13, 381 (2005).
http://dx.doi.org/10.1002/pip.641
71.
71. S. Gatz, H. Plagwitz, P. P. Altermatt, B. Terheiden, and R. Brendel, Appl. Phys. Lett. 93, 173502 (2008).
http://dx.doi.org/10.1063/1.3009571
72.
72. C. Leendertz, N. Mingirulli, T. F. Schulze, J. P. Kleider, B. Rech, and L. Korte, Appl. Phys. Lett. 98, 202108 (2011).
http://dx.doi.org/10.1063/1.3590254
73.
73. T. F. Schulze, H. N. Beushausen, C. Leendertz, A. Dobrich, B. Rech, and L. Korte, Appl. Phys. Lett. 96, 25102 (2010).
http://dx.doi.org/10.1063/1.3455900
74.
74. S. de Wolf, B. Demaurex, A. Descoeudres, and C. Ballif, Phys. Rev. B 83, 233301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.233301
75.
75. A. Illiberi, M. Creatore, W. M. M. Kessels, and M. C. M. van de Sanden, Phys. Status Solidi (RRL) 4, 206 (2010).
http://dx.doi.org/10.1002/pssr.201004234
76.
76. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692 (1999).
http://dx.doi.org/10.1126/science.285.5428.692
77.
77. R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce, and C. R. Wronski, Sol. Energy Mater. Sol. Cells 78, 143 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00436-1
78.
78. A. H. M. Smets, W. M. M. Kessels, and M. C. M. van de Sanden, Appl. Phys. Lett. 82, 1547 (2003).
http://dx.doi.org/10.1063/1.1559657
79.
79. M. N. van den Donker, B. Rech, W. M. M. Kessels, and M. C. M. van de Sanden, New J. Phys. 9, 280 (2006).
http://dx.doi.org/10.1088/1367-2630/9/8/280
80.
80. G. Dingemans, M. N. van den Donker, D. Hrunski, A. Gordijn, W. M. M. Kessels, and M. C. M. van de Sanden, Appl. Phys. Lett. 93, 111914 (2008).
http://dx.doi.org/10.1063/1.2987519
81.
81. N. Mingirulli et al., Status Solidi (RRL) 5, 159 (2011).
http://dx.doi.org/10.1002/pssr.201105056
82.
82. S. Martín de Nicolá, D. Muñoz, A. S. Ozanne, N. Nguyen, and P. J. Ribeyron, Energy Procedia 8, 226 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.128
83.
83. D. L. Bätzner et al., Energy Procedia 8, 153 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.117
84.
84. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 20, 12 (2012).
http://dx.doi.org/10.1002/pip.2163
85.
85. R. Santbergen and R. J. C. van Zolingen, Sol. Energy Mater. Sol. Cells 92, 432 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.10.005
86.
86. T. Fellmeth, S. Mack, J. Bartsch, D. Erath, U. Jäger, R. Preu, F. Clement, and D. Biro, IEEE Electron Device Lett. 32, 1101 (2011).
http://dx.doi.org/10.1109/LED.2011.2157656
87.
87. J.-H. Lai, A. Upadhyaya, R. Ramanathan, A. Das, K. Tate, V. Upadhyaya, A. Kapoor, C.-W. Chen, and A. Rohatgi, IEEE J. Photovoltaics 1, 16 (2011).
http://dx.doi.org/10.1109/JPHOTOV.2011.2163151
88.
88. A. Wolf, D. Biro, J. Nekarda, S. Stumpp, A. Kimmerle, S. Mack, and R. Preu, J. Appl. Phys. 108, 124510 (2010).
http://dx.doi.org/10.1063/1.3506706
89.
89. S. M. George, Chem. Rev. 110, 111 (2010).
http://dx.doi.org/10.1021/cr900056b
90.
90. M. Leskelä and M. Ritala, Angew. Chem., Int. Ed. 42, 5548 (2003).
http://dx.doi.org/10.1002/anie.200301652
91.
91. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).
http://dx.doi.org/10.1116/1.3609974
92.
92. R. L. Puurunen, Appl. Surf. Sci. 245, 6 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.10.003
93.
93. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
94.
94. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Chem. Mater. 16, 639 (2004).
http://dx.doi.org/10.1021/cm0304546
95.
95. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, Thin Solid Films 413, 186 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00438-8
96.
96. S. B. S. Heil, J. L. van Hemmen, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 103, 103302 (2008).
http://dx.doi.org/10.1063/1.2924406
97.
97. J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 154, G165 (2007).
http://dx.doi.org/10.1149/1.2737629
98.
98. G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 13, H76 (2010).
http://dx.doi.org/10.1149/1.3276040
99.
99. S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, P66 (2010).
http://dx.doi.org/10.1149/1.3428705
100.
100. J. W. Lim and S. J. Yun, Electrochem. Solid-State. Lett. 7, F45 (2004).
http://dx.doi.org/10.1149/1.1756541
101.
101. S.-C. Ha, E. Choi, S.-H. Kim, and J. S. Roh, Thin Solid Films 476, 252 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.09.035
102.
102. S. K. Kim and C. S. Hwang, J. Appl. Phys. 96, 2323 (2004).
http://dx.doi.org/10.1063/1.1769090
103.
103. S. D. Elliott, G. Scarel, C. Wiemer, M. Fanciulli, and G. Pavia, Chem. Mater. 18, 3764 (2006).
http://dx.doi.org/10.1021/cm0608903
104.
104. D. N. Goldstein, J. A. McCormick, and S. M. George, J. Phys. Chem. C 112, 19530 (2008).
http://dx.doi.org/10.1021/jp804296a
105.
105. E. Langereis, J. Keijmel, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 92, 231904 (2008).
http://dx.doi.org/10.1063/1.2940598
106.
106. E. Granneman, P. Fischer, D. Pierreux, H. Terhorst, and P. Zagwijn, Surf. Coat. Technol. 201, 8899 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.05.009
107.
107. G. Dingemans, N. M. Terlinden, D. Pierreux, H. B. Profijt, M. C. M. van de Sanden, and W. M. M. Kessels, Electrochem. Solid-State Lett. 14, H1 (2011).
http://dx.doi.org/10.1149/1.3501970
108.
108. J. W. Elam, D. Routkevitch, and S. M. George, J. Electrochem. Soc. 150, G339 (2003).
http://dx.doi.org/10.1149/1.1569481
109.
109. J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, Nanoscale 3, 3482 (2011).
http://dx.doi.org/10.1039/c1nr10349k
110.
110. J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, “Atomic layer deposition for photovoltaics: application and prospects for solar cell manufacturing,” Semicond. Sci. Technol. (to be published).
111.
111. E. B. Yousfi, T. Asikainen, V. Pietu, P. Cowache, M. Powalla, and D. Lincot, Thin Solid Films 361, 183 (2000).
http://dx.doi.org/10.1016/S0040-6090(99)00860-3
112.
112. P. Genevée, F. Donsanti, G. Renou, and D. Lincot, Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
113.
113. Y. Ohtake, K. Kushiya, M. Ichikawa, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., Part 1 34, 5949 (1995).
http://dx.doi.org/10.1143/JJAP.34.5949
114.
114. C. Platzer-Bjorkman, J. Lu, J. Kessler, and L. Stolt, Thin Solid Films 431, 321 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00229-3
115.
115. W. J. Potscavage, S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 90, 253511 (2007).
http://dx.doi.org/10.1063/1.2751108
116.
116. S. Sarkar, J. H. Culp, J. T. Whyland, M. Garvan, and V. Misra, Org. Electron. 11, 1896 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.020
117.
117. P. F. Carcia, R. S. McLean, and S. Hegedus, Sol. Energy Mater. Sol. Cells 94, 2375 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.08.021
118.
118. S. Hegedus, P. F. Carcia, R. S. McLean, and B. Culver, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
119.
119. C. Cibert, H. Hidalgo, C. Champeaux, P. Tristant, C. Tixier, J. Desmaison, and A. Catherinot, Thin Solid Films 516, 1290 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.05.064
120.
120. M. T. Seman, D. N. Richards, P. Rowlette, and C. A. Wolden, Chem. Vap. Deposition 14, 296 (2008).
http://dx.doi.org/10.1002/cvde.200806701
121.
121. C. E. Chryssou and C. W. Pitt, IEEE J. Quantum Electron. 34, 282 (1998).
http://dx.doi.org/10.1109/3.658711
122.
122. S. Miyajima, J. Irikawa, A. Yamada, and M. Konogai, Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008 (unpublished).
123.
123. S. Miyajima, J. Irikawa, A. Yamada, and M. Konagai, Appl. Phys. Express 3, 012301 (2010).
http://dx.doi.org/10.1143/APEX.3.012301
124.
124. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, Appl. Phys. Lett. 95, 151502 (2009).
http://dx.doi.org/10.1063/1.3250157
125.
125. G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses,” Plasma Processes Polym. (in press).
126.
126. L. Black, K. M. Provancha, and K. R. McIntosh, Proceedings of the 26th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 5–9 September 2011 (unpublished).
127.
127. T.-T. Li and A. Cuevas, Phys. Status Solidi (RRL) 3, 160 (2009).
http://dx.doi.org/10.1002/pssr.200903140
128.
128. V. Verlaan, L. R. J. G. van den Elzen, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi C 7, 976 (2010).
129.
129. G. Dingemans, A. Clark, J. A. van Delft, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 109, 113107 (2011).
http://dx.doi.org/10.1063/1.3595691
130.
130. V. V. Afanas’ev, M. Houssa, A. Stesmans, C. Merckling, T. Schram, and J. A. Kittl, Appl. Phys. Lett. 99, 072103 (2011).
http://dx.doi.org/10.1063/1.3623439
131.
131. A. Roy Chowdhuri, C. G. Takoudis, R. F. Klie, and N. D. Browning, Appl. Phys. Lett. 80, 4241 (2002).
http://dx.doi.org/10.1063/1.1483903
132.
132. R. Kuse, M. Kundu, T. Yasuda, N. Miyata, and A. Toriumi, J. Appl. Phys. 94, 6411 (2003).
http://dx.doi.org/10.1063/1.1618918
133.
133. S. D. Elliott and J. C. Greer, J. Mater. Chem. 14, 3246 (2004).
http://dx.doi.org/10.1039/b405776g
134.
134. A. J. M. Mackus, S. B. S. Heil, E. Langereis, H. C. M. Knoops, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 28, 77 (2010).
http://dx.doi.org/10.1116/1.3256227
135.
135. G. Dingemans, R. Seguin, P. Engelhart, M. C. M. van de Sanden, and W. M. M. Kessels, Phys. Status Solidi (RRL) 4, 10 (2010).
http://dx.doi.org/10.1002/pssr.200903334
136.
136. J. Schmidt, B. Veith, and R. Brendel, Phys. Status Solidi (RRL) 3, 287 (2009).
http://dx.doi.org/10.1002/pssr.200903272
137.
137. B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, and M. C. M. van de Sanden, Appl. Phys. Lett. 91, 112107 (2007).
http://dx.doi.org/10.1063/1.2784168
138.
138. A. Richter, J. Benick, M. Hermle, and S. W. Glunz, Phys. Status Solidi (RRL) 5, 202 (2011).
http://dx.doi.org/10.1002/pssr.201105188
139.
139. R. Bock, J. Schmidt, S. Mau, B. Hoex, and R. Brendel, IEEE Trans. Electron Devices 57, 1966 (2010).
http://dx.doi.org/10.1109/TED.2010.2050953
140.
140. S. Bordihn, et al. (to be published).
141.
141. B. Hoex, M. C. M. van de Sanden, J. Schmidt, R. Brendel, and W. M. M. Kessels, Phys. Status Solidi (RRL) 6, 4 (2012).
http://dx.doi.org/10.1002/pssr.201105445
142.
142. S. Steingrube, P. P. Altermatt, D. S. Steingrube, J. Schmidt, and R. Brendel, J. Appl. Phys. 108, 014506 (2010).
http://dx.doi.org/10.1063/1.3437643
143.
143. G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 110, 093715 (2011).
http://dx.doi.org/10.1063/1.3658246
144.
144. H. B. Profijt, P. Kudlacek, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 158, G88 (2011).
http://dx.doi.org/10.1149/1.3552663
145.
145. P. Saint-Cast, Y.-H. Heo, E. Billot, P. Olwal, M. Hofmann, J. Rentsch, S. W. Glunz, and R. Preu, Energy Procedia 8, 642 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.195
146.
146. J. Benick, A. Richter, T. -T. A.A. Li, N. E. Grant, K. R. Mc Intosh, Y. Ren, K. J. Weber, M. Hermle, and S. W. Glunz, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
147.
147. F. Werner, B. Veith, D. Zielke, L. Kühnemund, C. Tegenkamp, M. Seibt, R. Brendel, and J. Schmidt, J. Appl. Phys. 109, 113701 (2011).
http://dx.doi.org/10.1063/1.3587227
148.
148. G. Dingemans and W. M. M. Kessels, ECS Trans. 41, 293 (2011).
http://dx.doi.org/10.1149/1.3633680
149.
149. F. Werner, B. Veith, V. Tiba, P. Poodt, F. Roozeboom, R. Brendel, and J. Schmidt, Appl. Phys. Lett. 97, 162103 (2010).
http://dx.doi.org/10.1063/1.3505311
150.
150. N. M. Terlinden, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 96, 112101 (2010).
http://dx.doi.org/10.1063/1.3334729
151.
151. R. S. Johnson, G. Luckovsky, and I. Baumvol, J. Vac. Sci. Technol. A 19, 1353 (2001).
http://dx.doi.org/10.1116/1.1379316
152.
152. D. Hoogeland, K. B. Jinesh, F. Roozeboom, W. F. A. Besling, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 106, 114107 (2009).
http://dx.doi.org/10.1063/1.3267299
153.
153. A. Stesmans, J. Appl. Phys. 88, 489 (2000).
http://dx.doi.org/10.1063/1.373684
154.
154. C. R. Helms and E. H. Poindexter, Rep. Prog. Phys. 57, 791 (1994).
http://dx.doi.org/10.1088/0034-4885/57/8/002
155.
155. E. Simoen, A. Rothschild, B. Vermang, J. Poortmans, and R. Mertens, Electrochem. Solid-State Lett. 14, H362 (2011).
http://dx.doi.org/10.1149/1.3597661
156.
156. M. Fanciulli, O. Costa, S. Baldovino, S. Cocco, G. Seguini, E. Prati, and G. Scarel, Defects in High-k Gate Dielectric Stacks, NATO Science Series Vol. 220 (Springer, Dordrecht, 2005), p. 263.
157.
157. G. Kawachi, C. F. O. Graeff, M. S. Brandt, and M. Stutzmann, Phys. Rev. B 54, 7957 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.7957
158.
158. S. Baldovino, S. Nokhrin, G. Scarel, M. Fanciulli, T. Graf, and M. S. Brandt, J. Non-Cryst. Solids 322, 166 (2003).
http://dx.doi.org/10.1016/S0022-3093(03)00277-1
159.
159. D. Haneman, Phys. Rev. 170, 705 (1968).
http://dx.doi.org/10.1103/PhysRev.170.705
160.
160. M. H. Brodsky and R. S. Title, Phys. Rev. Lett. 23, 581 (1969).
http://dx.doi.org/10.1103/PhysRevLett.23.581
161.
161. G. Dingemans, W. Beyer, M. C. M. van de Sanden, and W. M. M. Kessels, Appl. Phys. Lett. 97, 152106 (2010).
http://dx.doi.org/10.1063/1.3497014
162.
162. G. Dingemans, F. Einsele, W. Beyer, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 111, 093713 (2012).
http://dx.doi.org/10.1063/1.4709729
163.
163. A. Stesmans and V. V. Afanas’ev, J. Appl. Phys. 97, 033510 (2004).
http://dx.doi.org/10.1063/1.1818718
164.
164. D. Liu, S. J. Clark, and J. Robertson, Appl. Phys. Lett. 96, 032905 (2010).
http://dx.doi.org/10.1063/1.3293440
165.
165. P. C. McIntyre, ECS Trans. 11, 235 (2007).
http://dx.doi.org/10.1149/1.2779564
166.
166. J. Robertson, Solid-State Electron. 49, 283 (2005).
http://dx.doi.org/10.1016/j.sse.2004.11.011
167.
167. P. W. Peacock and J. Robertson, Appl. Phys. Lett. 83, 2025 (2003).
http://dx.doi.org/10.1063/1.1609245
168.
168. K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085110
169.
169. J. R. Weber, A. Janotti, and C. G. van de Walle, J. Appl. Phys. 109, 033715 (2011).
http://dx.doi.org/10.1063/1.3544310
170.
170. B. Shin, J. R. Weber, R. D. Long, P. K. Hurley, C. G. van de Walle, and P. C. McIntyre, Appl. Phys. Lett. 96, 152908 (2010).
http://dx.doi.org/10.1063/1.3399776
171.
171. V. V. Afanas’ev, A. Stesmans, B. J. Mrstik, and C. Zhao, Appl. Phys. Lett. 81, 1678 (2002).
http://dx.doi.org/10.1063/1.1501163
172.
172. J. J. H. Gielis, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 104, 073701 (2008).
http://dx.doi.org/10.1063/1.2985906
173.
173. K. Kimoto, Y. Matsui, T. Nabatame, T. Yasuda, T. Mizoguchi, I. Tanaka, and A. Toriumi, Appl. Phys. Lett. 83, 4306 (2003).
http://dx.doi.org/10.1063/1.1629397
174.
174. T. Gougousi, D. Barua, E. D. Young, and G. N. Parsons, Chem. Mater. 17, 5093 (2005).
http://dx.doi.org/10.1021/cm0510965
175.
175. C. van der Marel, M. Yildirim, and H. R. Stapert, J. Vac. Sci. Technol. A 23, 1456 (2005).
http://dx.doi.org/10.1116/1.2008274
176.
176. S. Guha and V. Narayanan, Phys. Rev. Lett. 98, 196101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196101
177.
177. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, Phys. Rev. B 65, 174117 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.174117
178.
178. G. Dingemans, R. Seguin, P. Engelhart, F. Einsele, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, J. Appl. Phys. 106, 114907 (2009).
http://dx.doi.org/10.1063/1.3264572
179.
179. J. Schmidt et al., Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008 (unpublished).
180.
180. G. Dingemans and W. M. M. Kessels, Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
181.
181. A. Richter, M. Horteis, J. Benick, S. Hennick, M. Hermle, and S. W. Glunz, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
182.
182. J. Schmidt et al., Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
183.
183. D. Kania, P. Saint-Cast, M. Hofmann, J. Rentsch, and R. Preu, Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
184.
184. S. Gatz, H. Hannebauer, R. Hesse, F. Werner, A. Schmidt, Th. Dullweber, J. Schmidt, K. Bothe, and R. Brendel, Phys. Status Solidi (RRL) 5, 147 (2011).
http://dx.doi.org/10.1002/pssr.201105045
185.
185. A. Richter, S. Hennick, J. Benick, M. Hörteis, M. Hermle, and S. W. Glunz, Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
186.
186. B. Vermang et al., Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 19–24 June 2011 (IEEE, New York, 2011).
187.
187. J. Benick, B. Hoex, G. Dingemans, A. Richter, M. Hermle, and S. W. Glunz, Proceedings of the 24th European Photovoltaic Energy Conference, Hamburg, Germany, 21–25 September 2009 (unpublished).
188.
188. P. Saint-Cast, J. Benick, D. Kania, L. Weiss, M. Hofmann, J. Rentsch, R. Preu, and S. W. Glunz, IEEE Electron Device Lett. 31, 695 (2010).
http://dx.doi.org/10.1109/LED.2010.2049190
189.
189. G. Dingemans, C. A. A. van Helvoirt, W. Keuning, and W. M. M. Kessels, J. Electrochem. Soc. 159, 277 (2012).
http://dx.doi.org/10.1149/2.067203jes
190.
190. T. Suntola and J. Antson, U.S. Patent 4,058,430 (15 November 1977).
191.
191. D. H. Levy, D. Freeman, S. F. Nelson, P. J. Cowdery-Corvan, and L. M. Irving, Appl. Phys. Lett. 92, 192101 (2008).
http://dx.doi.org/10.1063/1.2924768
192.
193.
194.
194. E. H. A. Granneman, P. Vermont, V. Kuznetsov, M. Koolen, and K. Vanormelingen, Proceedings of the 25th European Photovoltaic Energy Conference, Valencia, Spain, 6–10 September 2010 (unpublished).
195.
195. I. Cesar et al., Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
196.
196. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. 22, 3564 (2010).
http://dx.doi.org/10.1002/adma.201000766
197.
197. B. Vermang, A. Rothschild, A. Racz, J. John, J. Poortmans, R. Mertens, P. Poodt, V. Tiba, and F. Roozeboom, Prog. Photovoltaics 19, 733 (2011).
http://dx.doi.org/10.1002/pip.1092
198.
198. F. Werner, W. Stals, R. Görtzen, B. Veith, R. Brendel, and J. Schmidt, Energy Procedia 8, 301 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.140
199.
199. S. E. Potts, G. Dingemans, Ch. Lachaud, and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 021505 (2012).
http://dx.doi.org/10.1116/1.3683057
200.
200. O. Schultz, S. W. Glunz, and G. P. Willeke, Prog. Photovoltaics 12, 553 (2004).
http://dx.doi.org/10.1002/pip.583
201.
201. E. Schneiderlöchner, R. Preu, R. Lüdemann, and S. W. Glunz, Prog. Photovoltaics 10, 29 (2002).
http://dx.doi.org/10.1002/pip.422
202.
202. P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, A. Schoonderbeek, U. Stute, and R. Brendel, Prog. Photovoltaics 15, 521 (2007).
http://dx.doi.org/10.1002/pip.758
203.
203. P. Engelhart et al., Energy Procedia 8, 313 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.142
204.
204. N. Bateman, P. Sullivan, C. Reichel, J. Benick, and M. Hermle, Energy Procedia 8, 509 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.174
205.
205. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, Prog. Photovoltaics 16, 461 (2008).
http://dx.doi.org/10.1002/pip.823
206.
206. D. Zielke, J. H. Petermann, F. Werner, B. Veith, R. Brendel, and J. Schmidt, Phys. Status Solidi (RRL) 5, 298 (2011).
http://dx.doi.org/10.1002/pssr.201105285
207.
207. J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. Garralaga Rojas, and R. Brendel, Prog. Photovoltaics 20, 1 (2012).
http://dx.doi.org/10.1002/pip.1129
208.
208. T. Lauermann, T. Lüder, S. Scholz, G. Hahn, and B. Terheiden, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
209.
209. B. Vermang, H. Goverde, L. Tous, A. Lorenz, P. Choulat, J. Horzel, J. John, J. Poortmans, and R. Mertens, Prog. Photovoltaics 20, 269 (2012).
http://dx.doi.org/10.1002/pip.2196
210.
210. I. Cesar et al., 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 19–24 June 2011 (IEEE, New York, 2011).
211.
211. P. Engelhart et al., Proceedings of the 26th European Photovoltaic Energy Conference, Hamburg, Germany, 5–9 September 2011 (unpublished).
212.
212. D. Suwito, U. Jäger, J. Benick, S. Janz, M. Hermle, and S. W. Glunz, IEEE Trans. Electron Devices 57, 2032 (2010).
http://dx.doi.org/10.1109/TED.2010.2051194
213.
213. A. Richter, M. Hörteis, J. Benick, S. Henneck, M. Hermle, and S. W. Glunz, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
214.
214. C. Schmiga, M. Hörteis, M. Rauer, K. Meyer, J. Lossen, H.-J. Krokoszinski, M. Hermle, and S. W. Glunz, Proceedings of the 24th European Photovoltaic Energy Conference, Hamburg, Germany, 21–25 September 2009 (unpublished).
215.
215. A. Richter, J. Benick, A. Kalio, J. Seiffe, M. Hörteis, M. Hermle, and S. W. Glunz, Energy Procedia 8, 479 (2011).
http://dx.doi.org/10.1016/j.egypro.2011.06.169
216.
216. V. Mertens et al., Proceedings of the 26th EUPVSEC, Hamburg, Germany, 5–9 September 2011 (unpublished).
217.
217. A. R. Burgers et al., Proceedings of the 25th EUPVSEC, Valencia, Spain, 6–10 September 2010 (unpublished).
218.
218. C. Gong, S. Singh, J. Robbelein, N. Posthuma, E. Van Kerschaver, J. Poortmans, and R. Mertens, Prog. Photovoltaics 19, 781 (2011).
http://dx.doi.org/10.1002/pip.1035
219.
219. C. Reichel, M. Reusch, F. Granek, M. Hermle, and S. W. Glunz, Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, 2010).
220.
220. R. Bock, S. Mau, J. Schmidt, and R. Brendel, Appl. Phys. Lett. 96, 263507 (2010).
http://dx.doi.org/10.1063/1.3456536
221.
221. F. Kiefer, C. Ullzhofer, T. Brendemühl, N.-P. Harder, R. Brendel, V. Mertens, S. Bordihn, C. Peters, and J. W. Müller, IEEE J. Photovoltaics 1, 49 (2011).
http://dx.doi.org/10.1109/JPHOTOV.2011.2164953
222.
222. W. C. Sun, W. L. Chang, C. H. Chen, C. H. Du, T. Y. Wang, T. Wang, and C. W. Lana, Electrochem. Solid-State Lett. 12, H388 (2009).
http://dx.doi.org/10.1149/1.3194252
223.
223. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett. 91, 233117 (2007).
http://dx.doi.org/10.1063/1.2821113
224.
224. M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek, N. S. Lewis, and H. A. Atwater, Energy Environ. Sci. 4, 866 (2011).
http://dx.doi.org/10.1039/c0ee00549e
225.
225. D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, Nano Lett. 11, 2704(2011).
http://dx.doi.org/10.1021/nl2009636
226.
226. A. Polman and H. A. Atwater, Nature Mater. 11, 174 (2012).
http://dx.doi.org/10.1038/nmat3263
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/30/4/10.1116/1.4728205
Loading
/content/avs/journal/jvsta/30/4/10.1116/1.4728205
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/30/4/10.1116/1.4728205
2012-07-06
2016-09-26

Abstract

The reduction in electronic recombination losses by the passivation of silicon surfaces is a critical enabler for high-efficiency solar cells. In 2006, aluminum oxide (Al2O3) nanolayers synthesized by atomic layer deposition(ALD) emerged as a novel solution for the passivation of p- and n-type crystalline Si (c-Si) surfaces. Today, high efficiencies have been realized by the implementation of ultrathin Al2O3films in laboratory-type and industrial solar cells. This article reviews and summarizes recent work concerning Al2O3 thin films in the context of Si photovoltaics. Topics range from fundamental aspects related to material, interface, and passivation properties to synthesis methods and the implementation of the films in solar cells.Al2O3 uniquely features a combination of field-effect passivation by negative fixed charges, a low interface defect density, an adequate stability during processing, and the ability to use ultrathin films down to a few nanometers in thickness. Although various methods can be used to synthesize Al2O3, this review focuses on ALD—a new technology in the field of c-Si photovoltaics. The authors discuss how the unique features of ALD can be exploited for interface engineering and tailoring the properties of nanolayer surface passivation schemes while also addressing its compatibility with high-throughput manufacturing. The recent progress achieved in the field of surface passivation allows for higher efficiencies of industrial solar cells, which is critical for realizing lower-cost solar electricity in the near future.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/30/4/1.4728205.html;jsessionid=VbQnDfOvTZmrISIz7Ip3tXOe.x-aip-live-03?itemId=/content/avs/journal/jvsta/30/4/10.1116/1.4728205&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/30/4/10.1116/1.4728205&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/30/4/10.1116/1.4728205'
Right1,Right2,Right3,