Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/31/5/10.1116/1.4799504
1.
1. A. M. Kurakin, S.A. Vitusevich, S.V. Danylyuk, H. Hardtdegen, N. Klein, Z. Bougrioua, B.A. Danilchenko, R.V. Konakova, and A.E. Belyaev, J. Appl. Phys. 103, 083707 (2008).
http://dx.doi.org/10.1063/1.2903144
2.
2. A. Y. Polaykov, S.J. Pearton, P. Frenzer, F. Ren, L. Liu, and J. Kim, J. Mater. Chem. C 1, 877 (2013).
http://dx.doi.org/10.1039/c2tc00039c
3.
3. H. Nykänen, S. Suihkonen, L. Kilanski, M. Sopanen, and F. Tuomisto, Appl. Phys. Lett. 100, 122105 (2012).
http://dx.doi.org/10.1063/1.3696047
4.
4. J. Oila et al., Phys. Rev. B 63, 045205 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.045205
5.
5. C. Ionascut-Nedelcsescu, A. Carlone, A. Houdayer, H.J. von Bardelleben, J.L. Cantin, and S. Raymond, IEEE Trans. Nucl. Sci. 49, 2733 (2002).
http://dx.doi.org/10.1109/TNS.2002.805363
6.
6. G. A. Umana-Membreno, J.M. Dell, T.P. Hessler, B.D. Nener, G. Parish, L. Faraone, and U.K. Mishra, Appl. Phys. Lett. 80, 4354 (2002).
http://dx.doi.org/10.1063/1.1483390
7.
7. D. C. Look, G.C. Farlow, P.J. Drevinsky, D.F. Bliss, and J.R. Sizelove, Appl. Phys. Lett. 83, 3525 (2003).
http://dx.doi.org/10.1063/1.1623009
8.
8. D. C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, and R.J. Molnar, Phys. Rev. Lett. 79, 2273 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2273
9.
9. K. Saarinen, T. Suski, I. Grzegory, and D.C. Look, Phys. Rev. B 64, 233201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.233201
10.
10. F. Tuomisto, V. Ranki, D.C. Look, and G.C. Farlow, Phys. Rev. B 76, 165207 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165207
11.
11. F. Tuomisto, D.C. Look, and G.C. Farlow, Physica B 401/402, 604 (2007).
http://dx.doi.org/10.1016/j.physb.2007.09.032
12.
12. Q. Yang, H. Feick, and E.R. Weber, Physica B 376/377, 447 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.115
13.
13. L. M. Liang, X.J. Xie, Q.Y. Hao, Y. Tian, and C.C. Liu, Radiat. Meas. 47, 965 (2012).
http://dx.doi.org/10.1016/j.radmeas.2012.07.017
14.
14. X. Fu, T. Ma, C. Zhang, L. Zhang, Z. Zhang, X. Wang, H. Ma, and H. Tu, Nucl. Instrum. Meth. B 286, 138 (2012).
http://dx.doi.org/10.1016/j.nimb.2012.01.054
15.
15. J. G. Marques, K. Lorenz, N. Franco, and E. Alves, Nucl. Instrum. Meth. B 249, 358 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.028
16.
16. K. Lorenz, J.G. Marques, N. Franco, E. Alves, M. Peres, M.R. Correia, and T. Monteiro, Nucl. Instrum. Meth. B 266, 2780 (2008).
http://dx.doi.org/10.1016/j.nimb.2008.03.116
17.
17. P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaacki, Appl. Phys. Lett. 63, 2676 (1993).
http://dx.doi.org/10.1063/1.110417
18.
18. S. A. Vitusevich, A.M. Kurakin, R.V. Konakova, A.E. Belyaev, N. Klein, Appl. Surf. Sci. 255, 784 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.07.029
19.
19. M. Hayes, F.D. Auret, L. Wu, W.E. Meyer, J.M. Nel, and M.J. Legodi, Physica B 340/342, 421 (2003).
http://dx.doi.org/10.1016/j.physb.2003.09.058
20.
20. C. Uzan-Saguy, J. Salzman, R. Kalish, V. Richter, U. Tish, S. Zamir, and S. Prawer, Appl. Phys. Lett. 74, 2441 (1999).
http://dx.doi.org/10.1063/1.123874
21.
21. J. Nord, K. Nordlund, and J. Keininen, Phys. Rev. B 68, 184104 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.184104
22.
22. T. H. Myers, A.J. Ptak, B.L. VanMil, M. Moldovan, P.J. Treado, M.P. Nelson, J.M. Ribar, and C.T. Zugates, J. Vac. Sci. Technol. B 18, 2295 (2000).
http://dx.doi.org/10.1116/1.1306295
23.
23. I. A. Buyanova, M. Wagner, W.M. Chen, B. Monemar, J.L. Lindström, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73, 2968 (1998).
http://dx.doi.org/10.1063/1.122646
24.
24. S. O. Kucheyev, J.S. Williams, and C. Jagadish, Phys. Rev. B 64, 035202 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.035202
25.
25. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, In-Hwan Lee, Jong Hyeob Baek, N.G. Kolin, V.M. Boiko, D.I. Merkurisov, and S.J. Pearton, J. Electrochem. Soc. 155, H31 (2008).
http://dx.doi.org/10.1149/1.2803517
26.
26. D. W. Jenkins, J.D. Dow, and M.-H. Tsai, J. Appl. Phys. 72, 4130 (1992).
http://dx.doi.org/10.1063/1.352220
27.
27. G. A. Umana-Membreno, J.M. Dell, G. Parish, B.N. Nener, L. Faraone, and U.K. Mishra, IEEE Trans. Electron Dev. 50, 2326 (2003).
http://dx.doi.org/10.1109/TED.2003.820122
28.
28. K. H. Chow, L.S. Vlasenko, P. Johannesen, C. Bozdog, and G.D. Watkins, Phys. Rev. B 69, 045207 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045207
29.
29. L. Polenta, Z.-Q. Fang, and D.C. Look, Appl. Phys. Lett. 76, 2086 (2000).
http://dx.doi.org/10.1063/1.126263
30.
30. F. D. Auret, S.A. Goodman, F.K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 74, 407 (1999).
http://dx.doi.org/10.1063/1.123043
31.
31. S. A. Goodman, F.D. Auret, F.K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gibart, Mater. Sci. Eng. B-Solid 71, 100 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00357-8
32.
32. M. Senthil Kumar, G. Sonia, D. Kanjilal, R. Dhanasekaran, and J. Kumar, Nucl. Instrum. Meth. B 207, 308 (2003).
http://dx.doi.org/10.1016/S0168-583X(03)00966-2
33.
33. S. J. Cai et al., IEEE Trans. Electron Dev. 47, 304 (2000).
http://dx.doi.org/10.1109/16.822272
34.
34. X. W. Hu et al., IEEE Trans. Nucl. Sci. 50, 1791 (2003).
http://dx.doi.org/10.1109/TNS.2003.820792
35.
35. J. Neugebauer and C.G. Van de Walle, Phys. Rev. B 50, 8067 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8067
36.
36. P. Boguslawski, E.I. Briggs, and J. Bernholc, Phys. Rev. B 51, 17255 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.17255
37.
37. A. P. Karmarkar, B. Jun, D.M. Fleetwood, D.D. Schrimpf, R.A. Weller, B.D. White, L.S. Brillson, and U.K. Mishra, IEEE Trans. Nucl. Sci. 51, 3801 (2004).
http://dx.doi.org/10.1109/TNS.2004.839199
38.
38. B. D. White, M. Bataiev, S.H. Goss, X. Hu, A. Karmarkar, D.M. Fleetwood, R.D. Schrimpf, W.J. Schaff, and L.J. Brillson, IEEE Trans. Nucl. Sci. 50, 1934 (2003).
http://dx.doi.org/10.1109/TNS.2003.821827
39.
39. H. Y. Kim, T. Anderson, M.A. Mastron, J.A. Freitas, Jr., S. W. Jang, J. Hite, C.R. Eddy, Jr., and J. Y. Kim, J. Cryst. Growth 326, 62 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.01.052
40.
40. H. Y. Kim, J.H. Kim, S.P. Yun, K.R. Kim, T.J. Anderson, F. Ren and S.J. Pearton, J. Electrochem. Soc. 155, H513 (2008).
http://dx.doi.org/10.1149/1.2917256
41.
41. B. Luo, Jihyun Kim, F. Ren, S.J. Pearton, J.K. Gillespie, and R.C. Fitch, Appl. Phys. Lett. 82, 1428 (2003).
http://dx.doi.org/10.1063/1.1559631
42.
42. G. Sonia, E. Richter, F. Brunner, A. Denker, R. Lossy, M. Mai, and F. Lenk, Solid-State Electron. 52, 1011 (2008).
http://dx.doi.org/10.1016/j.sse.2008.02.005
43.
43. X. W. Hu et al., IEEE Trans. Nucl. Sci. 51, 293 (2004).
http://dx.doi.org/10.1109/TNS.2004.825077
44.
44. Tania Roy, En Xia Zhang, YevgeniyS. Puzyrev, DanielM. Fleetwood, RonaldD. Schrimp, BoK. Choi, AnthonyB. Hmelo, and SokratesT. Pantelides, IEEE Trans. Nucl. Sci. 57, 3060 (2010).
45.
45. Y. Puzyrev, T. Roy, E.X. Zhang, D.M. Fleetwood, R.D. Schrimpf, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 58, 2918 (2011).
http://dx.doi.org/10.1109/TNS.2011.2170433
46.
46. Byung-Jae Kim, Hong-Yeol Kim, Jihyun Kim, and S. Jang, J. Cryst. Growth 326, 205 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.01.098
47.
47. S. A. Goodman, F.D. Auret, G. Myburg, M.J. Legodi, P. Gibart, and B. Beaumont, Mater. Sci. Eng. B-Solid 82, 95 (2001).
http://dx.doi.org/10.1016/S0921-5107(00)00746-7
48.
48. T. Ahlgren and E.J. Rauhala, J. Appl. Phys. 90, 4871 (2001).
http://dx.doi.org/10.1063/1.1337076
49.
49. J. W. Tringe, A.M. Conway, T.E. Felter, W. J.M. Chan, J. Castelaz, V. Lordi, Y. Xia, C.G. Stevens, and C. Wetzel, IEEE Trans. Nucl. Sci. 55, 3633 (2008).
http://dx.doi.org/10.1109/TNS.2008.2006169
50.
50. R. D. Harris, L.Z. Scheick, J.P. Hoffman, T. Thrivikraman, M. Jenabi, Y. Gim, and T. Miyahira, Proceedings of the 2011 IEEE Radiation Effects DataWorkshop (REDW), Atlanta, GA, May 2011 (unpublished).
51.
51. G. A. Umana-Membreno, J.M. Dell, G. Parish, B.D. Nener, L. Faraone, S. Keller, and U.K. Mishra, J. Appl. Phys. 101, 054511 (2007).
http://dx.doi.org/10.1063/1.2435972
52.
52. F. D. Auret, S.A. Goodman, F.K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 73, 3745 (1998).
http://dx.doi.org/10.1063/1.122881
53.
53. F. D. Auret, W.E. Meyer, S.A. Goodman, M. Hayes, M.J. Legodi, B. Beaumont, and P. Gibar, Mater. Sci. Eng.: B 93, 6 (2002).
http://dx.doi.org/10.1016/S0921-5107(02)00047-8
54.
54. A. Y. Polyakov et al., J. Vac. Sci. Technol. B 25, 436 (2007).
http://dx.doi.org/10.1116/1.2713406
55.
55. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.G. Kolin, D.I. Merkurisov, V.M. Boiko, A.V. Korulin, and S.J. Pearton, J. Vac. Sci. Technol. B 28, 608 (2010).
http://dx.doi.org/10.1116/1.3431083
56.
56. George D. Watkins, AIP Conf. Proc. 772, 245 (2005).
http://dx.doi.org/10.1063/1.1994085
57.
57. P. Johannesen, A. Zakrzewski, L.S. Vlasenko, G.D. Watkins, Akira Usui, Haruo Sunakawa, and Masashi Mizuta, Phys. Rev. B 69, 045208 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045208
58.
58. J. F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions inSolids, 2nd ed. (Pergamon, New York, 1996).
59.
59. J. R. Srour, C.J. Marshall, and P.W. Marshall, IEEE Trans. Nucl. Sci. 50, 653 (2003).
http://dx.doi.org/10.1109/TNS.2003.813197
60.
60. J. R. Srour, IEEE Trans. Nucl. Sci. 18, 359 (1971).
http://dx.doi.org/10.1109/TNS.1971.4326454
61.
61. G. C. Messenger and M.S. Ash, The Effects of Radiation on ElectronicSystems, 2nd ed. (Van NostrandReinhold, New York, 1992), pp. 198203, and references therein.
62.
62. G. P. Summers, E.A. Burke, P. Shapiro, S.R. Messenger, and R.J. Waters, IEEE Trans. Nucl. Sci. 40, 1372 (1993).
http://dx.doi.org/10.1109/23.273529
63.
63. M. Linde, S.J. Uftring, and G.D. Watkins, Phys. Rev. B 55, R10177 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R10177
64.
64. K. H. Chow, G.D. Watkins, A. Usui, and M. Mizuta, Phys. Rev. Lett. 85, 2761 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2761
65.
65. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, S.J. Pearton, J.M. Zavada, and R.G. Wilson, J. Appl. Phys. 94, 3069 (2003).
http://dx.doi.org/10.1063/1.1600828
66.
66. A. Y. Polyakov et al., J. Vac. Sci. Technol. B 24, 2256 (2006).
http://dx.doi.org/10.1116/1.2338045
67.
67. Z.-Q. Fang, J.W. Hemsky, D.C. Look, and M.P. Mack, Appl. Phys. Lett. 72, 448 (1998).
http://dx.doi.org/10.1063/1.120783
68.
68. B. B. Nielsen, J.U. Andersen, and S.J. Pearton, Phys. Rev. Lett. 60, 321 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.321
69.
69. J. W. Johnson et al., Appl. Phys. Lett. 77, 3230 (2000).
http://dx.doi.org/10.1063/1.1326041
70.
70. B. R. Gossick, J. Appl. Phys. 30, 1214 (1959).
http://dx.doi.org/10.1063/1.1735295
71.
71. A. Y. Polyakov et al., J. Appl. Phys. 100, 093715 (2006).
http://dx.doi.org/10.1063/1.2361157
72.
72. W. Walukiewicz, J. Vac. Sci. Technol. B 5, 1062 (1987).
http://dx.doi.org/10.1116/1.583729
73.
73. J. Tersoff, J. Vac. Sci. Technol. B 4, 1066 (1986).
http://dx.doi.org/10.1116/1.583543
74.
74. K. Kuriyama, T. Tokumasu, Jun Takahashi, H. Kondo, and M. Okada, Appl. Phys. Lett. 80, 3328 (2002).
http://dx.doi.org/10.1063/1.1477269
75.
75. V. V. Emtsev et al., Physica B: Cond. Mat. 308–310, 58 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00650-0
76.
76. N. M. Shmidt et al., Phys. Status Solidi B 216, 533 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199911)216:1<533::AID-PSSB533>3.0.CO;2-S
77.
77. In-Hwan Lee, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, and S.J. Pearton, Phys. Status Solidi C 3, 2087 (2006).
http://dx.doi.org/10.1002/pssc.200565195
78.
78. A. Y. Polyakov et al., J. Electron. Mater. 36, 1320 (2007).
http://dx.doi.org/10.1007/s11664-007-0203-8
79.
79. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, N.V. Pashkova, S.J. Pearton, J.M. Zavada, and R.G. Wilson, J. Vac. Sci. Technol. B 21, 2500 (2003).
http://dx.doi.org/10.1116/1.1617283
80.
80. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, N.G. Kolin, V.M. Boiko, D.I. Merkurisov, and S.J. Pearton, J. Vac. Sci. Technol. B 24, 1094 (2006).
http://dx.doi.org/10.1116/1.2188407
81.
81. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, K.H. Baik, S.J. Pearton, and J.M. Zavada, J. Vac. Sci. Technol. B 22, 2291 (2004).
http://dx.doi.org/10.1116/1.1781187
82.
82. B. H. Rose and C.E. Barnes, J. Appl. Phys. 53, 1772 (1982).
http://dx.doi.org/10.1063/1.331649
83.
83. J. Boch, F. Saigne, R.D. Schrimpf, J.R. Vaille, L. Dusseau, and E. Lorfevre, IEEE Trans. Nucl. Sci. 53, 3655 (2006).
http://dx.doi.org/10.1109/TNS.2006.886008
84.
84. A. P. Karmarkar, B.D. White, D. Buttari, D.M. Fleetwood, R.D. Schrimpf, R.A. Weller, L.J. Brillson, and U.K. Mishra, IEEE Trans. Nucl. Sci. 52, 2239 (2005).
http://dx.doi.org/10.1109/TNS.2005.860668
85.
85. F. Gaudreau, P. Fournier, C. Carlone, S.M. Khanna, H. Tang, J. Webb, and A. Houdayer, IEEE Trans. Nucl. Sci. 49, 2702 (2002).
http://dx.doi.org/10.1109/TNS.2002.805358
86.
86. A. Y. Polyakov, N.B. Smirnov, A.V. Govorkov, A.V. Markov, S.J. Pearton, N.G. Kolin, D.I. Merkurisov, and V.M. Boiko, J. Appl. Phys. 98, 033529 (2005).
http://dx.doi.org/10.1063/1.2006223
87.
87. A. Y. Polyakov et al., Appl. Phys. Lett. 93, 152101 (2008).
http://dx.doi.org/10.1063/1.3000613
88.
88. X. A. Cao, S.J. Pearton, A.P. Zhang, G.T. Dang, F. Ren, R.J. Shul, L. Zhang, R. Hickman, and J.M. Van Hove, Appl. Phys. Lett. 75, 2569 (1999).
http://dx.doi.org/10.1063/1.125080
89.
89. B. Luo et al., Appl. Phys. Lett. 80, 604 (2002).
http://dx.doi.org/10.1063/1.1445809
90.
90. A. Y. Polyakov et al., Physica B: Cond. Mat. 376–377, 523 (2006).
http://dx.doi.org/10.1016/j.physb.2005.12.133
91.
91. S. J. Pearton and C.R. Abernathy, Appl. Phys. Lett. 68, 1793 (1996).
http://dx.doi.org/10.1063/1.116015
92.
92. B. D. White et al., IEEE Trans. Nucl. Sci. 49, 2695 (2002).
http://dx.doi.org/10.1109/TNS.2002.805427
93.
93. B. Luo et al., Appl. Phys. Lett. 79, 2196 (2001).
http://dx.doi.org/10.1063/1.1408606
94.
94. A. Kalavagunta, M. Silvestri, M.J. Beck, S.K. Dixit, R.D. Schrimpf, R.A. Reed, D.M. Fleetwood, L. Shen, and U.K. Mishra, IEEE Trans. Nucl. Sci. 56, 3192 (2009).
http://dx.doi.org/10.1109/TNS.2009.2034156
95.
95. H. H. Tan, J.S. Williams, J. Zou, D. J.H. Cockayne, S.J. Pearton, J.C. Zolper, and R.A. Stall, Appl. Phys. Lett. 72, 1190 (1998).
http://dx.doi.org/10.1063/1.121030
96.
96. S. J. Pearton, F. Ren, A.P. Zhang, and K.P. Lee, Materials Sci. Eng. B 30, 55 (2000).
http://dx.doi.org/10.1016/S0927-796X(00)00028-0
97.
97. B. Luo et al., Solid-State Electron. 47, 1015 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00468-9
98.
98. J. Kim, R. Mehandru, B. Luo, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, and Y. Irokawa, Appl. Phys. Lett. 81, 373 (2002).
http://dx.doi.org/10.1063/1.1492852
99.
99. B. Luo et al., Appl. Phys. Lett. 80, 1661 (2002).
http://dx.doi.org/10.1063/1.1455692
100.
100. T. Wosińsky, J. Appl. Phys. 65, 1566 (1989).
http://dx.doi.org/10.1063/1.342974
101.
101. Y. Tokuda, Y. Matuoka, K. Yoshida, H. Ueda, O. Ishiguro, N. Soejima, and T. Kachi, Phys. Status Solidi C 4, 2568 (2007).
http://dx.doi.org/10.1002/pssc.200674704
102.
102. A. Y. Polyakov et al., Appl. Phys. Lett. 83, 2608 (2003).
http://dx.doi.org/10.1063/1.1614839
103.
103. S. M. Khanna, D. Estan, Alain Houdayer, H.C. Liu, and R. Dudek, IEEE Trans. Nucl. Sci. 51, 3585 (2004).
http://dx.doi.org/10.1109/TNS.2004.839105
104.
104. F. Gaudraeau, C. Cardone, A. Noudayer, and S.M. Khanna, IEEE Trans. Nucl. Sci. 48, 1778 (2001).
http://dx.doi.org/10.1109/23.983130
105.
105. M. Osinsky, P. Perlin, H. Schone, A.H. Paxtone, and E.W. Taylor, Electron. Lett. 33, 1252 (1997).
http://dx.doi.org/10.1049/el:19970816
106.
106. J. Grant, W. Cunningham, A. Blue, V. O'Shea, J. Vaitkus, E. Gaubas, and M. Rahman, Nucl. Instrum. Meth. A 546, 213 (2005).
http://dx.doi.org/10.1016/j.nima.2005.03.038
107.
107. J. Grant, R. Bates, W. Cunningham, A. Blue, J. Melone, F. McEwan, J. Vaitkus, E. Gaubas, and V. O'Shea, Nucl. Instrum. Meth. A 576, 60 (2007).
http://dx.doi.org/10.1016/j.nima.2007.01.121
108.
108. S. M. Hearne, D.N. Jaimeson, C. Yang, S. Prawer, J. Salzman, and O. Katz, Nucl. Instrum. Meth. B 190, 873 (2002).
http://dx.doi.org/10.1016/S0168-583X(01)01290-3
109.
109. K. K. Allums, M. Hlad, B.P. Gila, C.R. Abernathy, S.J. Pearton, F. Ren, R. Dwivedi, T.N. Fogarty, and R. Wilkins, J. Electron. Mater. 36, 519 (2007).
http://dx.doi.org/10.1007/s11664-006-0035-y
110.
110. S. N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, and S.T. Pantelides, IEEE Trans. Nucl. Sci. 51, 3158 (2004).
http://dx.doi.org/10.1109/TNS.2004.839202
111.
111. R. Khanna, K.K. Allums, C.R. Abernathy, S.J. Pearton, J. Kim, F. Ren, R. Dwivedi, T.N. Fogarty, and R. Wilkins, Appl. Phys. Lett. 85, 3131 (2004).
http://dx.doi.org/10.1063/1.1803933
112.
112. R. Khanna, S.Y. Han, S.J. Pearton, D. Schoenfeld, W.V. Schoenfeld, and F. Ren, Appl. Phys. Lett. 87, 212107 (2005).
http://dx.doi.org/10.1063/1.2132085
113.
113. B. Luo et al., J. Electron. Mater. 31, 437 (2002).
http://dx.doi.org/10.1007/s11664-002-0097-4
114.
114. A. Y. Polyakov, A.V. Govorkov, N.B. Smirnov, N.M. Shmidt, S.J. Pearton, and A.V. Osinsky, Solid-State Electron 47, 51 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00279-4
115.
115. Francesca Danesin, F. Zanon, S. Gerardin, F. Rampazzo, G. Meneghesso, E. Zanoni, and A. Paccagnella, Microelectron. Rel. 46, 1750 (2006).
http://dx.doi.org/10.1016/j.microrel.2006.07.066
116.
116. J. C. Zolper, H.H. Tan, J.S. Williams, J. Zou, D. J.H. Cockayne, S.J. Pearton, M. Hagerott Crawford, and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2729 (1997).
http://dx.doi.org/10.1063/1.119254
117.
117. S. J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan, and R.A. Stall, Appl. Phys. Lett. 67, 1435 (1995).
http://dx.doi.org/10.1063/1.114518
118.
118. J. Kim, R. Mehandru, B. Luo, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, and Y. Irokawa, Appl. Phys. Lett. 80, 4555 (2002).
http://dx.doi.org/10.1063/1.1487903
119.
119. S. J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys. 86, 1 (1999).
http://dx.doi.org/10.1063/1.371145
120.
120. H. H. Tan, J.S. Williams, J. Zou, D. J.H. Cockayne, S.J. Pearton, and R.A. Stall, Appl. Phys. Lett. 69, 2364 (1996).
http://dx.doi.org/10.1063/1.117526
121.
121. N. Theodoropoulou, A.F. Hebard, M.E. Overberg, C.R. Abernathy, S.J. Pearton, S. N.G. Chu, and R.G. Wilson, Appl. Phys. Lett. 78, 3475 (2001).
http://dx.doi.org/10.1063/1.1376659
122.
122. A. Y. Polyakov, I.-H. Lee, N.B. Smirnov, N.G. Kolin, A.V. Korulin, V.M. Boiko, and S.J. Pearton, J. Appl. Phys. 109, 123703 (2011).
http://dx.doi.org/10.1063/1.3596819
123.
123. I. Lee, A.Y. Polyakov, N. Smirnov, N.G. Kolin, V.M. Boiko, A.V. Korulin, and S.J. Pearton, J. Electrochem. Soc. 158, H866 (2011).
http://dx.doi.org/10.1149/1.3607986
124.
124. J. W. McClory and J.C. Petrosky, IEEE Trans. Nucl. Sci. 54, 1969 (2007).
http://dx.doi.org/10.1109/TNS.2007.910852
125.
125. A. Kalavagunta, A. Touboul, L. Shen, R.D. Schrimpf, R.A. Reed, D.M. Fleetwood, R.K. Jain, and U.K. Mishra, IEEE Trans. Nucl. Sci. 55, 2106 (2008).
http://dx.doi.org/10.1109/TNS.2008.2001705
126.
126. H.-Y. Kim, J. Kim, L. Liu, C.-F. Lo, F. Ren, and S.J. Pearton, J. Vac. Sci. Technol. B 30, 012202 (2012).
http://dx.doi.org/10.1116/1.3676034
127.
127. H.-Y. Kim, C.F. Lo, L. Liu, F. Ren, J. Kim, and S.J. Pearton, Appl. Phys. Lett. 100, 012107 (2012).
http://dx.doi.org/10.1063/1.3673906
128.
128. C. F. Lo et al., J. Vac. Sci. Technol. B 29, 061201 (2011).
http://dx.doi.org/10.1116/1.3644480
129.
129. J. T. Moran, J.W. McClory, J.C. Petrosky, and G.C. Farlow, IEEE Trans. Nucl. Sci. 56, 3223 (2009).
http://dx.doi.org/10.1109/TNS.2009.2033694
130.
130. S. Kuboyama, A. Maru, H. Shindou, N. Ikeda, T. Hirao, H. Abe, and T. Tamura, IEEE Trans. Nucl. Sci. 58, 2734 (2011).
http://dx.doi.org/10.1109/TNS.2011.2171504
131.
131. C.-F. Lo et al., J. Vac. Sci. Technol. B 30, 041206 (2012).
http://dx.doi.org/10.1116/1.4729285
132.
132. C. F. Lo et al., J. Vac. Sci. Technol. B 30, 031202 (2012).
http://dx.doi.org/10.1116/1.3698402
133.
133. A. Y. Polyakov et al., J. Vac. Sci. Technol. B 30, 061207 (2012).
http://dx.doi.org/10.1116/1.4766727
134.
134. Hong-Yeol Kim, Jihyun Kim, F. Ren, and Soohwan Jang, J. Vac. Sci. Technol. B 28, 27 (2010).
http://dx.doi.org/10.1116/1.3268136
135.
135. C. S. Li and S. Subramanian, IEEE Trans. Nucl. Sci 50, 1998 (2003).
http://dx.doi.org/10.1109/TNS.2003.821610
136.
136. Ching-Wu Wang, Appl. Phys. Lett. 80, 1568 (2002).
http://dx.doi.org/10.1063/1.1458076
137.
137. R. X. Wang et al., Appl. Phys. Lett. 87, 031906 (2005).
http://dx.doi.org/10.1063/1.1999011
138.
138. K. Kuriyama, M. Ooi, A. Onoue, K. Kushida, M. Okada, and Q. Xu, Appl. Phys. Lett. 88, 132109 (2006).
http://dx.doi.org/10.1063/1.2190446
139.
139. V. V. Emtsev, V. Yu. Davydov, V.V. Kozlovskii, G.A. Oganesyan, D.S. Poloskin, A.N. Smirnov, E.A. Tropp, and Yu.G. Morozov, Physica B: Cond. Mat. 401–402, 315 (2007).
http://dx.doi.org/10.1016/j.physb.2007.08.176
140.
140. S. Jha, EmilV. Jelenković, M.M. Pejović, G.S. Ristić, M. Pejović, K.Y. Tong, C. Surya, I. Bello, and W.J. Zhang, Microelectron. Eng. 86, 37 (2009).
http://dx.doi.org/10.1016/j.mee.2008.09.001
141.
141. Woo-Gwang Jung and Hong-Yeol Kim, Microelectron. Eng. 102, 60 (2013).
http://dx.doi.org/10.1016/j.mee.2012.02.013
142.
142. O. Aktas, A. Kuliev, V. Kumar, R. Schwindt, S. Toshkov, D. Costescu, J. Stubbins, and I. Adesida, Solid-State Electron. 48, 471 (2004).
http://dx.doi.org/10.1016/j.sse.2003.08.003
143.
143. Dong Uk Lee, Eun Kyu Kim, Byung Cheol Lee, and Dae Kon Oh, Thin Solid Films 516, 3482 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.08.050
144.
144. H. Ohyama, K. Takakura, M. Hanada, T. Nagano, K. Yoshino, T. Nakashima, S. Kuboyama, E. Simoen, and C. Claeys, Mater. Sci. Eng. B-Solid, 173, 57 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.03.018
145.
145. B. Luo, J.W. Johnson, D. Schoenfeld, S.J. Pearton, and F. Ren, Solid-State Electron 45, 1149 (2001).
http://dx.doi.org/10.1016/S0038-1101(01)00064-8
146.
146. C. Schwartz et al., Appl. Phys. Lett. 102, 062102 (2013).
http://dx.doi.org/10.1063/1.4792240
147.
147. Thomas Jarzen, M.S. thesis, Department of EngineeringPhysics, Air Force Institute of Technology, 2005.
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/31/5/10.1116/1.4799504
Loading
/content/avs/journal/jvsta/31/5/10.1116/1.4799504
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/31/5/10.1116/1.4799504
2013-04-09
2016-06-30

Abstract

A review of the effectsof proton, neutron, γ-ray, andelectron irradiation onGaN materials and devices ispresented. Neutronirradiation tends to create disordered regions in the GaN, while the damage from the other formsof radiation is moretypically point defects. In all cases, the damaged region contains carrier traps that reduce themobility and conductivity of the GaN and at high enough doses, a significant degradation of device performance.GaN is several orders ofmagnitude more resistant to radiation damage than GaAs of similar doping concentrations. In terms of heterostructures, preliminarydata suggests that the radiation hardness decreases in the order AlN/GaN > AlGaN/GaN > InAlN/GaN,consistent with the average bond strengths in the Al-based materials.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/31/5/1.4799504.html;jsessionid=dzX-pU3BM1mpqh0fEgg0o5-D.x-aip-live-03?itemId=/content/avs/journal/jvsta/31/5/10.1116/1.4799504&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/31/5/10.1116/1.4799504&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/31/5/10.1116/1.4799504'
Right1,Right2,Right3,