Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/31/5/10.1116/1.4813689
1.
1. E. De Guire, Am. Ceram. Soc. Bull. 92, 26 (2013).
2.
2. M. F. Ashby, Materials Selection in Mechanical Design(Pergamon, Tarrytown, 1992).
3.
3. M. F. Ashby, Materials Selection in Mechanical Design, 2nd ed. (Butterworth-Heinemann, Oxford, 1999).
4.
4. U. G. K. Wegst and M.F. Ashby, Philos. Mag. 84, 2167 (2004).
http://dx.doi.org/10.1080/14786430410001680935
5.
5. G. B. Olson, Science 277, 1237 (1997).
http://dx.doi.org/10.1126/science.277.5330.1237
6.
6. Materials Genome Initiative for Global Competitiveness, edited by the NationalScience and Technology Council, whitehouse.gov, 2011.
7.
7. P. Patel, MRS Bull. 36, 964 (2011).
http://dx.doi.org/10.1557/mrs.2011.306
8.
8. A. White, MRS Bull. 37, 715 (2012).
http://dx.doi.org/10.1557/mrs.2012.194
9.
9. M. A. O'Keefe et al., Ultramicroscopy 89, 215 (2001).
http://dx.doi.org/10.1016/S0304-3991(01)00094-8
10.
10. C. Kisielowski et al., Microsc. Microanal. 14, 467 (2008).
11.
11. P. A. Midgley and M. Weyland, Ultramicroscopy 96, 413 (2003).
http://dx.doi.org/10.1016/S0304-3991(03)00105-0
12.
12. T. F. Kelly and D.J. Larson, Mater. Charact. 44, 59 (2000).
http://dx.doi.org/10.1016/S1044-5803(99)00055-8
13.
13. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.57
14.
14. G. K. Binnig, Phys. Scr. T19A, 53 (1987).
http://dx.doi.org/10.1088/0031-8949/1987/T19A/008
15.
15. J. A. Anderson, C.D. Lorenz, and A. Travesset, J. Comput. Phys. 227, 5342 (2008).
http://dx.doi.org/10.1016/j.jcp.2008.01.047
16.
16. J. A. v. Meel, A. Arnold, D. Frenkel, S. F.P. Zwart, and R.G. Belleman, Mol. Simul. 34, 259 (2008).
http://dx.doi.org/10.1080/08927020701744295
17.
17. A. J. Freeman, J. Comput. Appl. Math. 149, 27 (2002).
http://dx.doi.org/10.1016/S0377-0427(02)00519-8
18.
18. M. Valiev et al., Comput. Phys. Commun. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
19.
19. M. Schmidt et al., J. Comput. Chem. 14, 1347 (1993).
http://dx.doi.org/10.1002/jcc.540141112
20.
20. M. J. Frisch et al., GAUSSIAN, Gaussian,Inc., Wallingford, CT, 2009.
21.
21. J. Hafner, Comput. Phys. Commun. 177, 6 (2007).
http://dx.doi.org/10.1016/j.cpc.2007.02.045
22.
22. X. Gonze et al., Comput. Mater. Sci. 25, 478 (2002).
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
23.
23. J. Hafner, C. Wolverton, and G. Ceder, MRS Bull. 659–668, 659 (2006).
24.
24. D. V. d. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H. J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005).
http://dx.doi.org/10.1002/jcc.20291
25.
25. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
26.
26. J. C. Phillips et al., J. Comput. Chem. 26, 1781 (2005).
http://dx.doi.org/10.1002/jcc.20289
27.
27. M. Finnis, Interatomic Forces in Condensed Matter(Oxford University Press, Inc., NewYork, 2003).
28.
28. D. W. Brenner and S.B. Sinnott, MRS Bull. 37, 469 (2012).
http://dx.doi.org/10.1557/mrs.2012.88
29.
29. G. Ceder, MRS Bull. 35, 693 (2010).
http://dx.doi.org/10.1557/mrs2010.681
30.
30. G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, and G. Ceder, Chem. Mater. 23, 3495 (2011).
http://dx.doi.org/10.1021/cm200949v
31.
31. R. Seshadri, S.L. Brock, A. Ramirez, M.A. Subramanian, and M.E. Thompson, MRS Bull. 37, 682 (2012).
http://dx.doi.org/10.1557/mrs.2012.147
32.
32. P. R. Willmott and H. Spillmann, Appl. Surf. Sci. 197–198, 432 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00355-0
33.
33. H. A. Bruck, R. Gilat, J. Aboudi, and A.L. Gershon, Modell. Simul. Mater. Sci. Eng. 15, 653 (2007).
http://dx.doi.org/10.1088/0965-0393/15/6/005
34.
34. M. E. Medina, A.E. Platero-Prats, N. Snejko, A. Rojas, A. Monge, F. Gandara, E. Gutierrez-Puebla, and M. A. Camblor, Adv. Mater. 23, 5283 (2011).
http://dx.doi.org/10.1002/adma.201101852
35.
35. U. Landman, W.D. Luedtke, N.A. Burnham, and R.J. Colton, Science 248, 454 (1990).
http://dx.doi.org/10.1126/science.248.4954.454
36.
36. U. Landman, W.D. Luedtke, B.E. Salisbury, and R.L. Whetten, Phys. Rev. Lett. 77, 1362 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.1362
37.
37. J. W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.631
38.
38. T. W. Odom, J.L. Huang, P. Kim, and C.M. Lieber, Nature 391, 62 (1998).
http://dx.doi.org/10.1038/34145
39.
39. K. Rajan, JOM 60, 53 (2008).
http://dx.doi.org/10.1007/s11837-008-0034-y
40.
40. K. Rajan, Annu. Rev. Mater. Res. 38, 299 (2008).
http://dx.doi.org/10.1146/annurev.matsci.38.060407.130217
41.
41. S. Broderick, C. Suh, J. Nowers, B. Vogel, S. Mallapragada, B. Narasimhan, and K. Rajan, JOM 60, 56 (2008).
http://dx.doi.org/10.1007/s11837-008-0035-x
42.
42. G. Rothenberg, Catal. Today 137, 2 (2008).
http://dx.doi.org/10.1016/j.cattod.2008.02.014
43.
43. S. Srinivasan and K. Rajan, Materials 6, 279 (2013).
http://dx.doi.org/10.3390/ma6010279
44.
44. K. Rajan, Mater. Today 8, 38 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)71123-8
45.
45. C. A. Becker, Tools, Models, Databases and Simulation ToolsDeveloped and Needed to Realize the Vision of ICME (ASM, 2011).
46.
46. E. B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, and C.A. Becker, 2011, http://openkim.org.
47.
47. E. B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, and C.A. Becker, JOM 63, 17 (2011).
http://dx.doi.org/10.1007/s11837-011-0102-6
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/31/5/10.1116/1.4813689
Loading
/content/avs/journal/jvsta/31/5/10.1116/1.4813689
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/31/5/10.1116/1.4813689
2013-07-16
2016-12-06

Abstract

The discovery and design of new materials to improve existing technologies or enable newapplications is a driving force for much of the research that takes place in multiple disciplines,including materials scienceand engineering, condensedmatter physics, and materials chemistry. This article reviews the way in which computational methods are being applied toachieve the promise of “materials by design.” In particular, the article reviews the technologiesthat have enabled the evolution of computational materials science as a field and its integration with cutting-edgeexperimental methods. Illustrative applications are discussed where traditional computational methods and materials informatics approaches wereapplied to design new materials. The article concludes with a discussion of the future outlook ofcomputational materialsscience within the context of material design and discovery.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/31/5/1.4813689.html;jsessionid=8b4QuAHj6_p0jvWU_6j-u8gd.x-aip-live-03?itemId=/content/avs/journal/jvsta/31/5/10.1116/1.4813689&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/31/5/10.1116/1.4813689&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/31/5/10.1116/1.4813689'
Right1,Right2,Right3,