Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/31/5/10.1116/1.4818423
1.
1. E. K. Richman and J.E. Hutchison, ACS Nano 3, 2441 (2009).
http://dx.doi.org/10.1021/nn901112p
2.
2. D. Cressey, Nature 467, 264 (2010).
http://dx.doi.org/10.1038/467264b
4.
4. A. B. Stefaniak et al., Nanotoxicology (2012).
http://dx.doi.org/10.3109/17435390.2012.739664
5.
5. Nat. Nano 7, 545(2012).
6.
6. See: http://www.ilsi.org/NanoCharacter/Pages/NanoCharacter.aspx for NanoCharacter: Acollaborative project to improve comparability in how nanomaterials are characterized, University ofMichigan Risk Science Center (2012).
7.
7. D. R. Baer et al., Surf. Interface Anal. 40, 529 (2008).
http://dx.doi.org/10.1002/sia.2726
8.
8. D. R. Beverhof and R.M. David, Anal. Bioanal. Chem. 396, 953 (2010).
http://dx.doi.org/10.1007/s00216-009-3103-3
9.
9. R. G. Finke, in Metal Nanoparticles, edited by D.L. Feldheim and D. C. A. Foss (MarcelDekker, New York, 2002), Chap. 2, pp. 1754.
10.
10. D. W. Grainger and D.G. Castner, Adv. Mater. 20, 867 (2008).
http://dx.doi.org/10.1002/adma.200701760
11.
11. V. H. Grassian, J. Phys. Chem. C 112, 18303 (2008).
http://dx.doi.org/10.1021/jp806073t
12.
12. A. S. Karakoti, L.L. Hench, and S. Seal, JOM 58, 77 (2006).
http://dx.doi.org/10.1007/s11837-006-0147-0
13.
13. S. J. L. Billinge and I. Levin, Science 316, 561 (2007).
http://dx.doi.org/10.1126/science.1135080
14.
14. M. R. Canagaratna et al., Mass. Spectrom. Rev. 26, 185 (2007).
http://dx.doi.org/10.1002/mas.20115
15.
15. See: www.foresight.org/nano/history.html fora short history of nanotechnology, Foresight Institute (2013).
16.
16. N. Taniguchi, in Proceedings International Conference onProduct Engineering Tokyo, Part II (Japan Society of PrecisionEngineering, Tokyo, 1974), 5 pp.
17.
17. M. C. Roco, C.A. Mirkin, and M.C. Hersam, Nanotechnology Research Directions for SocietalNeeds in 2020, Retrospective and Outlook (Springer, Berlin, 2010).
18.
18. See: http://www.nano.gov/nanotech-101/what/definition for What is nanotechnology?, NationalNanotechnology Initiative (2013).
19.
19. D. R. Baer, P.E. Burrows, and A.A. El-Azab, Prog. Org. Coat. 47, 342 (2003).
http://dx.doi.org/10.1016/S0300-9440(03)00127-9
20.
20. J. G. Li, W.X. Li, J.Y. Xu, X.O. Cai, R.L. Liu, Y.J. Li, Q.F. Zhao, and Q.N. Li, Environ. Toxicol. 22, 415 (2007).
http://dx.doi.org/10.1002/tox.20270
21.
21. R. Phillips and S.R. Quake, Phys. Today 59, 38 (2006).
http://dx.doi.org/10.1063/1.2216960
22.
22. B. Pelaz et al., ACS Nano 6, 8468 (2012).
http://dx.doi.org/10.1021/nn303929a
23.
23. R. M. Crist, J.H. Grossman, A.K. Patri, S.T. Stern, M.A. Dobrovolskaia, P.P. Adiseshaiah, J.D. Clogston, and S.E. McNeil, Integr. Biol. 5, 66 (2013).
http://dx.doi.org/10.1039/c2ib20117h
24.
24. J. M. Pettibone, J. Gigault, and V.A. Hackley, ACS Nano 7, 2491 (2013).
http://dx.doi.org/10.1021/nn3058517
25.
25. D. R. Baer, P.G. Tratnyek, Y. Qiang, J.E. Amonette, J.C. Linehan, V. Sarathy, J.T. Nurmi, C.M. Wang, and J. Antony, in Environmental Applications of Nanomaterials:Synthesis, Sorbents, and Sensors, edited by G. Fryxell and G. Cao (Imperial CollegePress, London, 2007), Chap. 3, pp. 4986.
26.
26. J. T. Nurmi, V. Sarathy, P.T. Tratnyek, D.R. Baer, J.E. Amonette, and A. Karkamkar, J. Nanopart. Res. 13, 1937 (2011).
http://dx.doi.org/10.1007/s11051-010-9946-x
27.
27. J. T. Nurmi et al., Environ. Sci. Technol. 39, 1221 (2005).
http://dx.doi.org/10.1021/es049190u
28.
28. V. Sarathy, P.G. Tratnyek, J.T. Nurmi, D.R. Baer, J.E. Amonette, C.L. Chun, R.L. Penn, and E.J. Reardon, J. Phys. Chem. C 112, 2286 (2008).
http://dx.doi.org/10.1021/jp0777418
29.
29. A. S. Karakoti, S. Kuchibhatla, K.S. Babu, and S. Seal, J. Phys. Chem. C 111, 17232 (2007).
http://dx.doi.org/10.1021/jp076164k
30.
30. A. S. Karakoti et al., Surf. Interface Anal. 44, 882 (2012).
http://dx.doi.org/10.1002/sia.5006
31.
31. A. S. Karakoti, S. Singh, A. Kumar, M. Malinska, S. Kuchibhatla, K. Wozniak, W.T. Self, and S. Seal, J. Am. Chem. Soc. 131, 14144 (2009).
http://dx.doi.org/10.1021/ja9051087
32.
32. S. V. N. T. Kuchibhatla, A.S. Karakoti, D.R. Baer, S. Samudrala, M.H. Engelhard, J.E. Amonette, S. Thevuthasan, and S. Seal, J. Phys. Chem. C 116, 14108 (2012).
http://dx.doi.org/10.1021/jp300725s
33.
33. C. T. Campbell and C. H.F. Peden, Science 309, 713 (2005).
http://dx.doi.org/10.1126/science.1113955
34.
34. M. Das, S. Patil, N. Bhargava, J.F. Kang, L.M. Riedel, S. Seal, and J.J. Hickman, Biomaterials 28, 1918 (2007).
http://dx.doi.org/10.1016/j.biomaterials.2006.11.036
35.
35. A. S. Karakoti, N.A. Monteiro-Riviere, R. Aggarwal, J.P. Davis, R.J. Narayan, W.T. Self, J. McGinnis, and S. Seal, JOM 60, 33 (2008).
http://dx.doi.org/10.1007/s11837-008-0029-8
36.
36. Z. P. Shao and S.M. Haile, Nature 431, 170 (2004).
http://dx.doi.org/10.1038/nature02863
37.
37. L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, and M. Suenaga, Phys. Rev. B 69, 125415 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.125415
38.
38. J. Y. Ma, H. Zhao, R.R. Mercer, M. Barger, M. Rao, T. Meighan, D. Schwegler-Berry, V. Castranova, and J.K. Ma, Nanotoxicology 5, 312 (2011).
http://dx.doi.org/10.3109/17435390.2010.519835
39.
39. J. M. Perez, A. Asati, S. Nath, and C. Kaittanis, Small 4, 552 (2008).
http://dx.doi.org/10.1002/smll.200700824
40.
40. S. S. Hardas et al., Toxicol. Sci. 116, 562 (2010).
http://dx.doi.org/10.1093/toxsci/kfq137
41.
41. B. K. Pierscionek, Y.B. Li, A.A. Yasseen, L.M. Colhoun, R.A. Schachar, and W. Chen, Nanotechnology 21, 035102 (2010).
http://dx.doi.org/10.1088/0957-4484/21/3/035102
42.
42. M. Safi, H. Sarrouj, O. Sandre, N. Mignet, and J.F. Berret, Nanotechnology 21, 145103 (2010).
http://dx.doi.org/10.1088/0957-4484/21/14/145103
43.
43. H. J. Eom and J. Choi, Toxicol. Lett. 187, 77 (2009).
http://dx.doi.org/10.1016/j.toxlet.2009.01.028
44.
44. R. A. Yokel et al., Nanotoxicology 3, 234 (2009).
http://dx.doi.org/10.1080/17435390902974496
45.
45. H. F. Zhang, X.A. He, Z.Y. Zhang, P. Zhang, Y.Y. Li, Y.H. Ma, Y.S. Kuang, Y.L. Zhao, and Z.F. Chai, Environ. Sci. Technol. 45, 3725 (2011).
http://dx.doi.org/10.1021/es103309n
46.
46. H. Zhang et al., J. Am. Chem. Soc. 134, 15790 (2012).
http://dx.doi.org/10.1021/ja304907c
47.
47. I. A. Mudunkotuwa, J.M. Pettibone, and V.H. Grassian, Environ. Sci. Technol. 46, 7001 (2012).
http://dx.doi.org/10.1021/es203851d
48.
48. H. L. Karlsson, P. Cronholm, J. Gustafsson, and L. Möller, Chem. Res. Toxicol. 21, 1726 (2008).
http://dx.doi.org/10.1021/tx800064j
49.
49. J. E. Castle and C.J. Powell, Surf. Interface Anal. 36, 225 (2004).
http://dx.doi.org/10.1002/sia.1678
50.
50. M. Schulze, K. Bolwin, E. Gülzow, and W. Schnurnberger, Fresen J. Anal. Chem. 353, 778 (1995).
http://dx.doi.org/10.1007/BF00321370
51.
51. G. B. Hoflund and M.L. Everett, J. Phys. Chem. B 108, 15721 (2004).
http://dx.doi.org/10.1021/jp048975j
52.
52. C. J. Johnston, J.N. Finkelstein, R. Gelein, R. Baggs and G. Oberdörster, Toxicol. Appl. Pharm. 140, 154 (1996).
http://dx.doi.org/10.1006/taap.1996.0208
53.
53. K. Pulskamp, S. Diabaté, and H.F. Krug, Toxicol. Lett. 168, 58 (2007).
http://dx.doi.org/10.1016/j.toxlet.2006.11.001
54.
54. D. J. Gaspar, M.H. Engelhard, M.C. Henry, and D.R. Baer, Surf. Interface Anal. 37, 417 (2005).
http://dx.doi.org/10.1002/sia.2031
55.
55. S. D. Techane, D.R. Baer, and D.G. Castner, Anal. Chem. 83, 6704 (2011).
http://dx.doi.org/10.1021/ac201175a
56.
56. J. Jie, W. Zhang, K. Peng, G. Yuan, C.S. Lee, and S.-T. Lee, Adv. Funct. Mater. 18, 3251 (2008).
http://dx.doi.org/10.1002/adfm.200800399
57.
57. C. F. Jones, D.B. Castner, and D.W. Grainger, in Handbook of Immunological Properties ofEngineered Nanomaterials (World Science, London, 2012), 117 pp.
58.
58. T. D. Vaden, C. Song, R.A. Zaveri, D. Imre, and A. Zelenyuk, Proc. Natl. Acad. Sci. U.S.A. 107, 6658 (2010).
http://dx.doi.org/10.1073/pnas.0911206107
59.
59. E. C. Scher, L. Manna, and A.P. Alivisatos, Philos. Trans. Roy. Soc. A 361, 241 (2003).
http://dx.doi.org/10.1098/rsta.2002.1126
60.
60. D. R. Baer, J. Surf. Anal. 17, 163 (2011).
61.
61. K. Moore, B. Forsberg, D.R. Baer, W.A. Arnold, and R.L. Penn, J. Environ. Eng.-ASCE 137, 889 (2011).
http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000407
62.
62. P. P. Adiseshaiah, J.B. Hall, and S.E. McNeil, Nanomed. Nanobiol. 2, 99 (2010).
http://dx.doi.org/10.1002/wnan.66
63.
63. G. A. Somorjai and J.Y. Park, Top. Catal. 49, 126 (2008).
http://dx.doi.org/10.1007/s11244-008-9077-0
64.
64. P. M. Ajayan, Nature 427, 402 (2004).
http://dx.doi.org/10.1038/427402a
65.
65. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature 427, 426 (2004).
http://dx.doi.org/10.1038/nature02278
66.
66. M. J. Yacaman, J.A. Ascencio, H.B. Liu, and J. Gardea-Torresdey, J. Vac. Sci. Technol. B 19, 1091 (2001).
http://dx.doi.org/10.1116/1.1387089
67.
67. M. R. Wiesner, G.V. Lowry, E. Casman, P.M. Bertsch, C.W. Matson, R.T. Di Giulio, J. Liu, and M.F. Hochella, ACS Nano 5, 8466 (2011).
http://dx.doi.org/10.1021/nn204118p
68.
68. T. J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook, and S.T. Pantelides, Nano Lett. 12, 3038 (2012).
http://dx.doi.org/10.1021/nl3008727
69.
69. M. F. Hochella, Earth Planet Sc. Lett. 203, 593 (2002).
http://dx.doi.org/10.1016/S0012-821X(02)00818-X
70.
70. E. M. Hotze, T. Phenrat, and G.V. Lowry, J. Environ. Qual. 39, 1909 (2010).
http://dx.doi.org/10.2134/jeq2009.0462
71.
71. I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-Lago, S. Linse, and K.A. Dawson, Adv. Colloid. Interface 134–135, 167 (2007).
http://dx.doi.org/10.1016/j.cis.2007.04.021
72.
72. H. Zhang et al., Proteomics 11, 4569 (2011).
http://dx.doi.org/10.1002/pmic.201100037
73.
73. H. Z. Zhang, B. Gilbert, F. Huang, and J.F. Banfield, Nature 424, 1025 (2003).
http://dx.doi.org/10.1038/nature01845
74.
74. J. Cohen, G. DeLoid, G. Pyrgiotakis, and P. Demokritou, Nanotoxicology 7, 417 (2013).
http://dx.doi.org/10.3109/17435390.2012.666576
75.
75. J. M. Krier, W.D. Michalak, L.R. Baker, K. An, K. Komvopoulos, and G.A. Somorjai, J. Phys. Chem. C 116, 17540 (2012).
http://dx.doi.org/10.1021/jp303363m
76.
76. B. L. Frankamp, A.K. Boal, M.T. Tuominen, and V.M. Rotello, J. Am. Chem. Soc. 127, 9731 (2005).
http://dx.doi.org/10.1021/ja051351m
77.
77. B. M. Reinhard, M. Siu, H. Agarwal, A.P. Alivisatos, and J. Liphardt, Nano Lett. 5, 2246 (2005).
http://dx.doi.org/10.1021/nl051592s
78.
78. D. R. Baer and M.H. Engelhard, J. Electron. Spectrosc. 178–179, 415 (2010).
http://dx.doi.org/10.1016/j.elspec.2009.09.003
79.
79. D. R. Baer, D.J. Gaspar, P. Nachimuthu, S.D. Techane, and D.G. Castner, Anal. Bioanal. Chem. 396, 983 (2010).
http://dx.doi.org/10.1007/s00216-009-3360-1
80.
80. J. P. Zhao, Z.Y. Chen, X.J. Cai, and J.W. Rabalais, J. Vac. Sci. Technol. B 24, 1104 (2006).
http://dx.doi.org/10.1116/1.2188410
81.
81. D. R. Baer, M.H. Engelhard, D.J. Gaspar, D.W. Matson, K.H. Pecher, J.R. Williams, and C.M. Wang, J. Surf. Anal. 12, 101 (2005).
82.
82. C. M. Wang, D.R. Baer, J.E. Amonette, M.H. Engelhard, J.J. Antony, and Y. Qiang, Ultramicroscopy 108, 43 (2007).
http://dx.doi.org/10.1016/j.ultramic.2007.03.002
83.
83. D. J. Gaspar, A. Laskin, W. Wang, S.W. Hunt, and B.J. Finlayson-Pitts, Appl. Surf. Sci. 231, 520 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.03.046
84.
84. P. Kingshott, G. Andersson, S.L. McArthur, and H.J. Griesser, Curr. Opin. Chem. Biol. 15, 667 (2011).
http://dx.doi.org/10.1016/j.cbpa.2011.07.012
85.
85. E. Amstad, M. Textor, and E. Reimhult, Nanoscale 3, 2819 (2011).
http://dx.doi.org/10.1039/c1nr10173k
86.
86. D. R. Baer, Surf. Interface. Anal. 44, 1305 (2012).
http://dx.doi.org/10.1002/sia.4938
87.
87. International Organization for Standards, “Surfacechemical analysis—Characterization of nanostructured materials,” ISO/TR 14187:2011(2011).
88.
88. C. J. Powell, J. Vac. Sci. Technol. A 21, S42 (2003).
http://dx.doi.org/10.1116/1.1599862
89.
89. A. Frydman, M. Schmal, D.B. Castner, and C.T. Campbell, J. Catal. 157, 133 (1995).
http://dx.doi.org/10.1006/jcat.1995.1274
90.
90. A. G. Shard, W.J. Wang, and S.J. Spencer, Surf. Interface Anal. 41, 541 (2009).
http://dx.doi.org/10.1002/sia.3044
91.
91. D. Q. Yang, J.N. Gillet, M. Meunier, and E. Sacher, J. Appl. Phys. 97, 024303 (2005).
http://dx.doi.org/10.1063/1.1835566
92.
92. D. Q. Yang, M. Meunier, and E. Sacher, Appl. Surf. Sci. 173, 134 (2001).
http://dx.doi.org/10.1016/S0169-4332(00)00895-3
93.
93. D. Q. Yang and E. Sacher, “ X-ray photoelectron spectroscopycharacterization of Nanoparticles (NPs): I. Dimensional effects,” 2008, http://www.scribd.com/doc/2194883/Nano-XPS-nanost-1
94.
94. S. Tougaard, Microsc. Microanal. 11, 676 (2005).
http://dx.doi.org/10.1017/S1431927605500229
95.
95. M. Mohai, Surf. Interface Anal. 36, 828 (2004).
http://dx.doi.org/10.1002/sia.1775
96.
96. M. Mohai and I. Bertoti, Surf. Interface Anal. 36, 805 (2004).
http://dx.doi.org/10.1002/sia.1769
97.
97. M. Mohai, E. Kiss, A. Toth, J. Szalma, and I. Bertoti, Surf. Interface Anal. 34, 772 (2002).
http://dx.doi.org/10.1002/sia.1408
98.
98. M. Mohai, XPS-MultiQuant, http://www.chemres.hu/aki/XMQpages/XMQhome.htm (2013).
99.
99. N. S. McIntyre, H.Y. Nie, A.P. Grosvenor, R.D. Davidson, and D. Briggs, Surf. Interface Anal. 37, 749 (2005).
http://dx.doi.org/10.1002/sia.2075
100.
100. quases, www.quases.com
101.
101. S. Hajati, S. Coultas, C. Blornfield, and S. Tougaard, Surf. Interface Anal. 40, 688 (2008).
http://dx.doi.org/10.1002/sia.2633
102.
102. S. Hajati, V. Zaporojtchenko, F. Faupel, and S. Tougaard, Surf. Sci. 601, 3261 (2007).
http://dx.doi.org/10.1016/j.susc.2007.06.001
103.
103. W. Smekal, W. S.M. Werner, and C.J. Powell, Surf. Interface Anal. 37, 1059 (2005).
http://dx.doi.org/10.1002/sia.2097
104.
104. A. Frydman, D.B. Castner, M. Schmal, and C.T. Campbell, J. Catal. 152, 164 (1995).
http://dx.doi.org/10.1006/jcat.1995.1070
105.
105. A. G. Shard, J. Phys. Chem. C 116, 16806 (2012).
http://dx.doi.org/10.1021/jp305267d
106.
106. P. J. Cumpson, Surf. Interface Anal. 29, 403 (2000).
http://dx.doi.org/10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8
107.
107. NIST Standard Ref. Database 82—NIST Electron Effective-Attenuation-Length Database,U.S. Department of Commerce, National Institute of Standards and Technology (2011); http://www.nist.gov/srd/nist82.cfm
108.
108. R. G. Haverkamp, A.T. Marshall, and B. C.C. Cowie, Surf. Interface Anal. 43, 847 (2011).
http://dx.doi.org/10.1002/sia.3644
109.
109. M. P. Seah, Surf. Interface Anal. 44, 1353 (2012).
http://dx.doi.org/10.1002/sia.5033
110.
110. C. J. Powell, App. Surf. Sci. 230, 327 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.01.073
111.
111. Y. Liang, A.S. Lea, D.E. McCready and P. Meethunkij, in State-of-the-Art Application of Surface andInterface Analysis Methods to Environmental Material Interactions: In Honor of James E. Castle's65th edited by D. R. Baer, C. R. Clayton, G. D. Davis and G. P. Halada (The ElectrochemicalSociety, Washington DC, 2001), Vol.2001-5, pp. 125.
112.
112. A. L. Koh, C.M. Shachaf, S. Elchuri, G.P. Nolan, and R. Sinclair, Ultramicroscopy 109, 111 (2008).
http://dx.doi.org/10.1016/j.ultramic.2008.09.004
113.
113. S. Ninomiya, K. Ichiki, H. Yamada, Y. Nakata, T. Seki, T. Aoki, and J. Matsuo, Rapid Commun. Mass Spectrosc. 23, 3264 (2009).
http://dx.doi.org/10.1002/rcm.4250
114.
114. V. S. Smentkowski, G. Zorn, A. Misner, G. Parthasarathy, A. Couture, E. Tallarek, and B. Hagenhoff, J. Vac. Sci. Technol. A 31, 030601 (2013).
http://dx.doi.org/10.1116/1.4793730
115.
115. B. D. Ratner, D.G. Castner, J. Brison, C. Barnes, and R. Daneshcvar, http://www.semineedle.com/system/files/BuddyRatner_5-14-09.pdf?snc=5963
116.
116. Y. P. Kim, E. Oh, Y.H. Oh, D.W. Moon, T.G. Lee, and H.S. Kim, Angew. Chem. Int. Edit. 46, 6816 (2007).
http://dx.doi.org/10.1002/anie.200701418
117.
117. D. Shi, Y. Zhou, S.X. Wang, W.J. Van Ooij, L.M. Wang, and J.G. Zhao, MRS Symp. 635, C428 (2001).
118.
118. R. Borade, A. Sayari, A. Adnot, and S. Kaliaguine, J. Phys. Chem. 94, 5989 (1990).
http://dx.doi.org/10.1021/j100378a068
119.
119. D. J. Gaspar, A. Laskin, W. Wang, S.W. Hunt, and B.J. Finlayson-Pitts, Appl. Surf. Sci. 231, 520 (2004).
120.
120. M. P. Seah, Surf. Interface Anal. 44, 208 (2012).
http://dx.doi.org/10.1002/sia.3798
121.
121. L. Yang, M.P. Seah, E.H. Anstis, I.S. Gilmore, and J. L.S. Lee, J. Phys. Chem. C 116, 9311 (2012).
http://dx.doi.org/10.1021/jp300900j
122.
122. R. Kersting, D. Breitenstein, B. Hagenhoff, M. Fartmann, D. Heller, T. Grehl, P. Brüner, and E. Niehuis, Surf. Interface Anal. 45, 503 (2013).
http://dx.doi.org/10.1002/sia.5117
123.
123. J. Scalf and P. West, “Part I: Introduction to nanoparticle characterization withAFM,” www.nanoparticles.org/pdf/Scalf-West.pdf
124.
124. P. Klapetek, M. Valtr, D. Necas, S. Salyk, and P. Dzik, Nanoscale Res. Lett. 6, 514 (2011).
http://dx.doi.org/10.1186/1556-276X-6-514
125.
125. ASTM, ASTM E2382-04 Guide to Scanner and Tip Related Artifacts in ScanningTunneling Microscopy and Atomic Force Microscopy (ASTM, West Conshohocken, PA, 2004).
126.
126. P. C. Braga and D. Ricci, Atomic Force Microscopy(Humana Press, New York, 2004).
127.
127. F. M. Serry, Microsc. Microanal. 11, 380 (2005).
http://dx.doi.org/10.1017/S1431927605509917
128.
128. I. U. Vakarelski, S.C. Brown, B.M. Moudgil, and K. Higashitani, Adv. Powder Tech. 18, 605 (2007).
http://dx.doi.org/10.1163/156855207782514905
129.
129. S. Gupta, P. Brouwer, S. Bandyopadhyay, S. Patil, R. Briggs, J. Jain, and S. Seal, J. Nanosci. Nanotechnol. 5, 1101 (2005).
http://dx.doi.org/10.1166/jnn.2005.151
130.
130. D. R. Baer, Surf. Interface Anal. 39, 283 (2007).
http://dx.doi.org/10.1002/sia.2508
131.
131. K. B. Eisenthal, Chem. Rev. 96, 1343 (1996).
http://dx.doi.org/10.1021/cr9502211
132.
132. Y. R. Shen, Nature 337, 519 (1989).
http://dx.doi.org/10.1038/337519a0
133.
133. K. B. Eisenthal, Chem. Rev. 106, 1462 (2006).
http://dx.doi.org/10.1021/cr0403685
134.
134. H. Wang, E. C.Y. Yan, E. Borguit, and K.B. Eisenthal, Chem. Phys. Lett. 259, 15 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00707-5
135.
135. T. Kawai, D.J. Neivandt, and P.B. Davies, J. Am. Chem. Soc. 122, 12031 (2000).
http://dx.doi.org/10.1021/ja002785e
136.
136. C. Weeraman, A.K. Yatawara, A.N. Bordenyuk, and A.V. Benderskii, J. Am. Chem. Soc. 128, 14244 (2006).
http://dx.doi.org/10.1021/ja065756y
137.
137. C. Y. Wang, H. Groenzin, and M.J. Shultz, J. Phys. Chem. B 108, 265 (2004).
http://dx.doi.org/10.1021/jp0356463
138.
138. M. T. Frederick, J.L. Achtyl, K.E. Knowles, E.A. Weiss, and F.M. Geiger, J. Am. Chem. Soc. 133, 7476 (2011).
http://dx.doi.org/10.1021/ja200466z
139.
139. S. Baldelli, A.S. Eppler, E. Anderson, Y.R. Shen, and G.A. Somorjai, J. Chem. Phys. 113, 5432 (2000).
http://dx.doi.org/10.1063/1.1290024
140.
140. G. A. Somorjai, S.K. Beaumont, and S. Alayoglu, Angew. Chem. Int. Edit. 50, 10116 (2011).
http://dx.doi.org/10.1002/anie.201008214
141.
141. S. Roke, W.G. Roeterdink, J. Wijnhoven, A.V. Petukhov, A.W. Kleyn, and M. Bonn, Phys. Rev. Lett. 91, 258302 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.258302
142.
142. A. M. Buchbinder, N.A. Ray, J. Lu, R.P. Van Duyne, P.C. Stair, E. Weitz, and F.M. Geiger, J. Am. Chem. Soc. 133, 17816 (2011).
http://dx.doi.org/10.1021/ja2067274
143.
143. Z. Lu, A.S. Karakoti, L. Velarde, W. Wang, P. Yang, S. Thevuthasan, and H. Wang, “ Dissociative binding of carboxylic acidligand on nano ceria surface in aqueous solution: A joint in situ characterization andfirst-principles study,” J. Phys. Chem. C (submitted).
144.
144. F. Bloch, Phys. Rev. 70, 460 (1946).
http://dx.doi.org/10.1103/PhysRev.70.460
145.
145. E. M. Purcell, N. Bloembergen, and R.V. Pound, Phys. Rev. 70, 988 (1946).
http://dx.doi.org/10.1103/PhysRev.70.988
146.
146. M. H. Levitt, Spin Dynamics: Basics of Nulcear MagneticResonance (Wiley, Chichester, 2001).
147.
147. C. A. Fyfe, Solid State NMR for Chemists(CFC Press, Guelph, 1984).
148.
148. P. Fiurasek and L. Reven, Langmuir 23, 2857 (2007).
http://dx.doi.org/10.1021/la0629781
149.
149. S. Sadasivan, D. Khushalanib, and S. Mann, J. Mater. Chem. 13, 1023 (2003).
http://dx.doi.org/10.1039/b300851g
150.
150. B. Zhang and B. Yan, Anal. Bioanal. Chem. 396, 973 (2010).
http://dx.doi.org/10.1007/s00216-009-2996-1
151.
151. A. Abragam, Principles of Nuclear Magnetism(Clarendon Press, Oxford, 1961).
152.
152. T. P. Das and E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy(Academic Press, New York, 1964).
153.
153. E. O. Stejskal and J. Schaefer, J. Magn. Reson. 28, 105 (1977).
154.
154. D. R. Baer et al., in Handbook of Deposition Technologies for Films andCoatings, edited by P. M. Martin (William AndrewPress, Oxford, UK, 2009).
155.
155. V. R. Stamenkovic, B.S. Mun, M. Arenz, K. J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Nat. Mater. 6, 241 (2007).
http://dx.doi.org/10.1038/nmat1840
156.
156. W. P. A. Jansen, J. M.A. Harmsen, A.W. Denier v.d. Gon, J.H. B. J. Hoebink, J.C. Schouten, and H.H. Brongersma, J. Catal. 204, 420 (2001).
http://dx.doi.org/10.1006/jcat.2001.3391
157.
157. A. Rafati, R. ter Veen, and D.G. Castner, Surf. Interface Anal.
http://dx.doi.org/10.1002/sia.5315
158.
158. P. L. Grande, “Recent advances of MEIS for near surface analysis,” http://www.slideshare.net/Engenharia.de.Superficies/recent-advances-of-meis-for-near-surface-analysis(2011).
159.
159. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, and X.C. Adroher, Appl. Energy 88, 981 (2011).
http://dx.doi.org/10.1016/j.apenergy.2010.09.030
160.
160. P. Mani, R. Srivastava, and P. Strasser, J. Phys. Chem. C 112, 2770 (2008).
http://dx.doi.org/10.1021/jp0776412
161.
161. I. E. L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, and I. Chorkendorff, Energy Environ. Sci. 5, 6744 (2012).
http://dx.doi.org/10.1039/c2ee03590a
162.
162. C. Wang et al., J. Phys. Chem. Lett. 3, 1668 (2012).
http://dx.doi.org/10.1021/jz300563z
163.
163. P. Milani, P. Piseri, E. Barborini, and S. Iannotta, Mater. Sci. Forum 195, 43 (1995).
http://dx.doi.org/10.4028/www.scientific.net/MSF.195.43
164.
164. S. Pratontep, S.J. Carroll, C. Xirouchaki, M. Streun, and R.E. Palmer, Rev. Sci. Instrum. 76, 045103 (2005).
http://dx.doi.org/10.1063/1.1869332
165.
165. U. Heiz, F. Vanolli, L. Trento, and W.D. Schneider, Rev. Sci. Instrum. 68, 1986 (1997).
http://dx.doi.org/10.1063/1.1148113
166.
166. A. I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. El-Shaer, J. Appl. Phys. 107, 034317 (2010).
http://dx.doi.org/10.1063/1.3296131
167.
167. A. Majumdar, D. Kopp, M. Ganeva, D. Datta, S. Bhattacharyya, and R. Hippler, Rev. Sci. Instrum. 80, 095103 (2009).
http://dx.doi.org/10.1063/1.3213612
168.
168. H. Haberland, M. Karrais, M. Mall, and Y. Thurner, J. Vac. Sci. Technol. A 10, 3266 (1992).
http://dx.doi.org/10.1116/1.577853
169.
169. B. Klipp, M. Grass, J. Muller, D. Stolcic, U. Lutz, G. Gantefor, T. Schlenker, J. Boneberg, and P. Leiderer, Appl. Phys. A 73, 547 (2001).
http://dx.doi.org/10.1007/s003390100947
170.
170. V. Franchetti, B.H. Solka, W.E. Baitinger, J.W. Amy, and R.G. Cooks, Int. J. Mass Spectrom. 23, 29 (1977).
171.
171. J. Cyriac, T. Pradeep, H. Kang, R. Souda, and R.G. Cooks, Chem. Rev. 112, 5356 (2012).
http://dx.doi.org/10.1021/cr200384k
172.
172. G. E. Johnson, T. Priest, and J. Laskin, ACS Nano 6, 573 (2012).
http://dx.doi.org/10.1021/nn2039565
173.
173. G. E. Johnson, C. Wang, T. Priest, and J. Laskin, Anal. Chem. 83, 8069 (2011).
http://dx.doi.org/10.1021/ac202520p
174.
174. G. E. Johnson, Q.C. Hu, and J. Laskin, Annu. Rev. Anal. Chem. 4, 83 (2011).
http://dx.doi.org/10.1146/annurev-anchem-061010-114028
175.
175. G. E. Johnson, T. Priest, and J. Laskin, J. Phys. Chem. C 116, 24977 (2012).
http://dx.doi.org/10.1021/jp308795r
176.
176. F. Claeyssens, S. Pratontep, C. Xirouchaki, and R.E. Palmer, Nanotechnology 17, 805 (2006).
http://dx.doi.org/10.1088/0957-4484/17/3/032
177.
177. W. E. Kaden, T.P. Wu, W.A. Kunkel, and S.L. Anderson, Science 326, 826 (2009).
http://dx.doi.org/10.1126/science.1180297
178.
178. K. A. Wepasnick, X. Li, T. Mangler, S. Noessner, C. Wolke, M. Grossmann, G. Gantefoer, D.H. Fairbrother, and K.H. Bowen, J. Phys. Chem. C 115, 12299 (2011).
http://dx.doi.org/10.1021/jp202165u
179.
179. L. Martinez, M. Diaz, E. Roman, M. Ruano, D. Llamosa, and Y. Huttel, Langmuir 28, 11241 (2012).
http://dx.doi.org/10.1021/la3022134
180.
180. S. H. Baker, S.C. Thornton, A.M. Keen, T.I. Preston, C. Norris, K.W. Edmonds, and C. Binns, Rev. Sci. Instrum. 68, 1853 (1997).
http://dx.doi.org/10.1063/1.1147957
181.
181. ASTM, E1078-09, Standard Guide for SpecimenPreparation and Mounting in Surface Analysis (2006).
182.
182. International Organization for Standards, “Surfacechemical analysis—Guidelines for preparation and mounting of specimens for analysis,” ISO 18116:2005(2005).
183.
183. D. S. Jensen et al., Surf. Interface Anal. 45, 1273 (2013).
http://dx.doi.org/10.1002/sia.5268
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/31/5/10.1116/1.4818423
Loading
/content/avs/journal/jvsta/31/5/10.1116/1.4818423
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/31/5/10.1116/1.4818423
2013-08-27
2016-05-03

Abstract

This review examines characterization challenges inherently associated with understandingnanomaterials and the rolessurface and interface characterization methods can play in meeting some of the challenges. In partsof the research community, there is growing recognition that studies and published reports on theproperties and behaviors ofnanomaterials often havereported inadequate or incomplete characterization. As a consequence, the true value of the data inthese reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research andtechnological applications,it is desirable that researchers from the wide variety of disciplines involved recognize the natureof these often unexpected challenges associated with reproducible synthesis and characterization ofnanomaterials, including thedifficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable forresearchers to understand how characterization approaches (surface and otherwise) can help tominimize synthesis surprises and to determine how (and how quickly) materials and properties change in differentenvironments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electronspectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provideinformation that helps address several of the analysis needs. In many circumstances, extensions of traditional dataanalysis can provideconsiderably more information than normally obtained from the data collected. Less common orevolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sumfrequency generation, and low and medium energy ion scattering) can provide information aboutsurfaces or interfaces in working environments ( or ) or information not provided by more traditional methods. Although these methods mayrequire instrumentation or expertise not generally available, they can be particularly useful inaddressing specific questions, and examples of their use in nanomaterial research are presented.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/31/5/1.4818423.html;jsessionid=UIDs64X1hV-fK+U4DYDoHOfb.x-aip-live-02?itemId=/content/avs/journal/jvsta/31/5/10.1116/1.4818423&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd