Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/31/5/10.1116/1.4818590
1.
1. D. Tabor, The Hardness of Metals(Clarendon, Oxford, 1951).
2.
2. F. A. McClintock and A.S. Argon, Mechanical Behavior of Materials(Addison-Wesley, Reading, 1966).
3.
3. O. Knotek, B. Bosserhoff, A. Schrey, T. Leyendecker, O. Lemmer, and S. Esser, Surf. Coat. Technol. 54/55, 102 (1992).
http://dx.doi.org/10.1016/S0257-8972(09)90035-4
4.
4. K.-D. Bouzakis, I. Mirisidis, N. Michailidis, E. Lili, A. Sampris, G. Erkens, and R. Cremer, Plasma Processes Polym. 4, 301 (2007).
http://dx.doi.org/10.1002/ppap.200600140
5.
5. A. Kelly and N.H. Macmillan, Strong Solids, 3rd.ed. (Clarendon, Oxford, 1986).
6.
6. G. Gottstein, Physical Foundations of MaterialsScience (Springer-Verlag, Berlin, 2004).
7.
7. The Properties of Natural and Synthetic Diamond, edited by J. E. Field (Academic, San Diego, 1992).
8.
8. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 3rd ed. (Wiley, NewYork, 1972).
9.
9. Y. Zhang, H. Sun, and C. Chen, Phys. Rev. B 73, 144115 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.144115
10.
10. D. M. Teter, Mater. Res. Soc. Bull. 23, 22 (1998).
11.
11. A. S. Argon, Strengthening Mechanisms in CrystalPlasticity (Oxford University, Oxford, 2008).
12.
12. H. Chacham and L. Kleinman, Phys. Rev. Lett. 85, 4904 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4904
13.
13. S. Veprek, A.S. Argon, and R.F. Zhang, Philos. Mag. 90, 4101 (2010).
http://dx.doi.org/10.1080/14786430903365294
14.
14. Y. Zhang, H. Sun, and C.F. Chen, Phys. Rev. B 73, 064109 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064109
15.
15. Y. Gogotsi, A. Kailer, and K.G. Nickel, Nature 401, 663 (1999).
http://dx.doi.org/10.1038/44323
16.
16. S. Z. Li, Y. Shi, and H.R. Peng, Plasma Chem. Plasma Process. 12, 287 (1992).
http://dx.doi.org/10.1007/BF01447027
17.
17. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.-D. Männling, P. Nesladek, G. Dollinger, and A. Bergmaier, Surf. Coat. Technol. 133–134, 152 (2000).
http://dx.doi.org/10.1016/S0257-8972(00)00957-9
18.
18. S. Veprek, M. G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films 476, 1 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.10.053
19.
19. S. Veprek, S. Reiprich, and S.Z. Li, Appl. Phys. Lett. 66, 2640 (1995).
http://dx.doi.org/10.1063/1.113110
20.
20. S. Veprek and S. Reiprich, Thin Solid Films 268, 64 (1995).
http://dx.doi.org/10.1016/0040-6090(95)06695-0
21.
21. J. S. Koehler, Phys. Rev. B 2, 547 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.547
22.
22. S. L. Lehoczky, Phys. Rev. Lett. 41, 1814 (1978).
http://dx.doi.org/10.1103/PhysRevLett.41.1814
23.
23. S. L. Lehoczky, J. Appl. Phys. 49, 5479 (1978).
http://dx.doi.org/10.1063/1.324518
24.
24. U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, and J.E. Greene, J. Appl. Phys. 62, 481 (1987).
http://dx.doi.org/10.1063/1.339770
25.
25. M. Shinn, L. Hultman, and S.A. Barnett, J. Mater. Res. 7, 901 (1992).
http://dx.doi.org/10.1557/JMR.1992.0901
26.
26. P. B. Mirkarimi, L. Hultman, and S.A. Barnett, Appl. Phys. Lett. 57, 2654 (1990).
http://dx.doi.org/10.1063/1.104189
27.
27. K. K. Shih and D.B. Dove, Appl. Phys. Lett. 61, 654 (1992).
http://dx.doi.org/10.1063/1.107812
28.
28. W. D. Sproul, Science 273, 889 (1996).
http://dx.doi.org/10.1126/science.273.5277.889
29.
29. S. H. Lee, K.H. Nam, J.-W. Lim, and J.-J. Kim, Surf. Coat. Technol. 174–175, 758 (2003).
http://dx.doi.org/10.1016/S0257-8972(03)00571-1
30.
30. J. Lin, J.J. Moore, B. Mishra, M. Pinkas, X. Zhang, and W.D. Sproul, Thin Solid Films 517, 5798 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.02.136
31.
31. S. A. Barnett, “ Physics of thin films,”in Mechanic and Dielectric Properties, edited by M. H. Francombe and J. L. Vossen (Academic, Boston, 1993), Vol. 17.
32.
32. S. A. Barnett and A. Madan, Phys. World 11, 45 (1998), available at http://physicsworld.com/cws/archive/print/11/3.
33.
33. S. A. Barnett, A. Madan, I. Kim, and K. Martin, Mater. Res. Soc. Bull. 28, 169 (2003).
http://dx.doi.org/10.1557/mrs2003.57
34.
34. X. Chu and S.A. Barnett, J. Appl. Phys. 77, 4403 (1995).
http://dx.doi.org/10.1063/1.359467
35.
35. W.-D. Münz, D.B. Lewis, P. Eh. Hovsepian, C. Schönjahn, A. Ehiasarian, and I.J. Smith, Surf. Eng. 17, 15 (2001).
http://dx.doi.org/10.1179/026708401101517557
36.
36. H. Söderberg, M. Oden, J.M. Molina-Aldareguia, and L. Hultman, J. Appl. Phys. 97, 114327 (2005).
http://dx.doi.org/10.1063/1.1935135
37.
37. X. P. Hu, H.J. Zhang, J.W. Dai, G.Y. Li, and M.Y. Gu, J. Vac. Sci. Technol. A 23, 114 (2005).
http://dx.doi.org/10.1116/1.1821583
38.
38. W. Li, P. Liu, Y. Zhao, K. Zhang, F. Ma, and X. Liu, Thin Solid Films 534, 367 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.049
39.
39. W. Li, P. Liu, J. Wang, F. Ma, X. Liu, X. Cheng, and L. Yang, Mater. Lett. 65, 636 (2011).
http://dx.doi.org/10.1016/j.matlet.2010.11.073
40.
40. W. Li, P. Liu, Y. Zhao, F. Ma, X. Liu, X. Cheng, and D. He, J. Alloys Compd. 562, 5 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.02.020
41.
41. A. Matthews, R. Jones, and S. Dowey, Tribol. Lett. 11, 103 (2001).
http://dx.doi.org/10.1023/A:1016667932251
42.
42. L. Hultman, G. Häkansson, U. Walström, J.E. Sundgren, I. Petrov, F. Adibi, and J.E. Greene, Thin Solid Films 205, 153 (1991).
http://dx.doi.org/10.1016/0040-6090(91)90297-B
43.
43. M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, Surf. Coat. Technol. 86–87, 225 (1996).
http://dx.doi.org/10.1016/S0257-8972(96)03033-2
44.
44. T. An, M. Wen, L.L. Wang, C.Q. Hu, H.W. Tian, and W.T. Zheng, J. Alloys Compd. 486, 515 (2009).
http://dx.doi.org/10.1016/j.jallcom.2009.06.194
45.
45. C. Ziebert and S. Ulrich, J. Vac. Sci. Technol. A 24, 554 (2006).
http://dx.doi.org/10.1116/1.2194031
46.
46. G. Li, J. Lao, J. Tian, Z. Han, and M. Gu, J. Appl. Phys. 95, 92 (2004).
http://dx.doi.org/10.1063/1.1630367
47.
47. C. H. Lin, Y.Z. Tsai, and J.G. Duh, Thin Solid Films 518, 7312 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.04.100
48.
48. P. C. Wo, X.L. Zhao, P.R. Munroe, Z.F. Zhou, K.Y. Li, D. Habibi, and Z.H. Xie, Acta Mater. 61, 193 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.09.049
49.
49. S. H. Zhang, F. Cai, and M.G. Li, Surf. Coat. Technol. 206, 3572 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.02.037
50.
50. S. H. Zhang, L. Wang, Q.M. Wang, and M.G. Li, Surf. Coat. Technol. 214, 160 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.05.144
51.
51. S. H. Zhang, L. Wang, Q.M. Wang, and M.G. Li, Surf. Coat. Technol. 214, 153 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.05.143
52.
52. W. Li, P. Liu, Y.S. Zhao, F.C. Ma, X.K. Liu, X.H. Chen, and D.H. He, Surf. Coat. Technol. 214, 168 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.11.019
53.
53. V. Valvoda, R. Kuzel, R. Cerny, and J. Musil, Thin Solid Films 156, 53 (1988).
http://dx.doi.org/10.1016/0040-6090(88)90282-9
54.
54. H. Holleck, J. Vac. Sci. Technol. A 4, 2661 (1986).
http://dx.doi.org/10.1116/1.573700
55.
55. P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, Thin Solid Films 415, 151 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00511-4
56.
56. P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer, and L. Hultman, Appl. Phys. Lett. 83, 2049 (2003).
http://dx.doi.org/10.1063/1.1608464
57.
57. W. Herr and E. Broszeit, Surf. Coat. Technol. 97, 335 (1997).
http://dx.doi.org/10.1016/S0257-8972(97)00196-5
58.
58. P. Karvánková, H.-D. Männling, C. Eggs, and S. Veprek, Surf. Coat. Technol. 146–147, 280 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01477-3
59.
59. J. Musil, Surf. Coat. Technol. 125, 322 (2000).
http://dx.doi.org/10.1016/S0257-8972(99)00586-1
60.
60. S. Zhang, D. Sun, Y. Fu, and H. Du, Surf. Coat. Technol. 198, 2 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.10.020
61.
61. S. Zhang, D. Sun, Y. Fu, Y.T. Pei, and J. Th. M. De Hosson, Surf. Coat. Technol. 200, 1530 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.08.080
62.
62. Y. X. Wang, S. Zhang, J.-W. Lee, W.S. Lew, D. Sun, and B. Li, Nanosci. Nanotechnol. Lett. 4, 375 (2012).
http://dx.doi.org/10.1166/nnl.2012.1369
63.
63. A. Matthews and A. Leyland, in Proceedings of the SVC Techcon,Chicago, April 19–24, 2008 (Society of Vacuum Coaters, Albuquerque, 2008), p. 40.
64.
64. I. Petrov, P.B. Barna, L. Hultman, and J.E. Greene, J. Vac. Sci. Technol. A 21, S117 (2003).
http://dx.doi.org/10.1116/1.1601610
65.
65. P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Prog. Mater. Sci. 51, 1032 (2006).
http://dx.doi.org/10.1016/j.pmatsci.2006.02.002
66.
66. F. Rovere, D. Music, S. Ershov, M. to Baben, H.-G. Fuss, P.H. Mayrhofer, and J.M. Schneider, J. Phys. D: Appl. Phys. 43, 035302 (2010).
http://dx.doi.org/10.1088/0022-3727/43/3/035302
67.
67. R. Rachbauer, D. Holec, M. Lattemann, L. Hultman, and P.H. Mayrhofer, Int. J. Mater. Res. 102, 735 (2011).
http://dx.doi.org/10.3139/146.110520
68.
68. D. Rafaja, C. Wüstefeld, M. Motylenko, Ch. Schimpf, T. Barsukova, M.R. Schwarz, and E. Kroke, Chem. Phys. Rev. 41, 5081 (2012).
http://dx.doi.org/10.1039/c2cs15351c
69.
69. G. S. Fox-Rabinovich, K. Yamamoto, B.D. Beake, I.S. Gershman, A.I. Kovalev, S.C. Veldhuis, M.H. Aguirre, C. Dosbaeva, and J.L. Endrino, Sci. Technol. Adv. Mater. 13, 043001 (2012).
http://dx.doi.org/10.1088/1468-6996/13/4/043001
70.
70. A. A. Voevodin and J.S. Zabinski, Compos. Sci. Technol. 65, 741 (2005).
http://dx.doi.org/10.1016/j.compscitech.2004.10.008
71.
71. A. A. Voevodin, T.A. Fitz, J.J. Hu, and J.S. Zabinski, J. Vac. Sci. Technol. A 20, 1434 (2002).
http://dx.doi.org/10.1116/1.1487875
72.
72. C. Muratore, A.A. Voevodin, J.J. Hu, and J.S. Zabinski, Tribol. Lett. 24, 201 (2006).
http://dx.doi.org/10.1007/s11249-006-9143-3
73.
73. C. Muratore, J.J. Hu, and A.A. Voevodin, Thin Solid Films 515, 3638 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.09.051
74.
74. C. Muratore, J.J. Hu, and A.A. Voevodin, Surf. Coat. Technol. 203, 957 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2008.08.073
75.
75. K. Sedlackova, P. Lobotka, and G. Radonczi, Carbon 43, 2192 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.03.035
76.
76. W. Gulbinski, S. Mathur, H. Shen, T. Suszko, A. Gilewicz, and B. Warcholinski, Appl. Surf. Sci. 239, 302 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.05.278
77.
77. D. Caschera, F. Federici, L. Pandolfi, S. Kaciulis, M. Sebastiani, E. Bemporad, and G. Padeletti, Thin Solid Films 519, 3061 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.031
78.
78. M. L. Cohen, Phys. Rev. B 32, 7988 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.7988
79.
79. A. Y. Liu and M.L. Cohen, Science 245, 841 (1989).
http://dx.doi.org/10.1126/science.245.4920.841
80.
80. M. L. Cohen, Solid State Commun. 92, 45 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90857-5
81.
81. A. Y. Liu and R.M. Wentzcovitch, Phys. Rev. B 50, 10362 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.10362
82.
82. S. Veprek, J. Weidmann, and F. Glatz, J. Vac. Sci. Technol. A 13, 2914 (1995).
http://dx.doi.org/10.1116/1.579613
83.
83. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements(Pergamon, Oxford, 1984); Quoted after the German translation Chemie der Elemente(VCH Verlag, Weinheim, 1991).
84.
84. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, and Y. Tian, Phys. Rev. Lett. 91, 015502 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.015502
85.
85. A. Simunek and J. Vackar, Phys. Rev. Lett. 96, 085501 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.085501
86.
86. A. Simunek, Phys. Rev. B 80, 060103 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.060103
87.
87. K. Li, X. Wang, F. Zhang, and D. Xue, Phys. Rev. Lett. 100, 235504 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.235504
88.
88. H. Cynn, J.E. Klepeis, C.-S. Yoo, and D. Young, Phys. Rev. Lett. 88, 135701 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.135701
89.
89. J. B. Levine, S.L. Nguyen, H.I. Rasool, J.A. Wright, S.E. Brown, and R.B. Kaner, J. Am. Chem. Soc. 130, 16953 (2008).
http://dx.doi.org/10.1021/ja804989q
90.
90. S. Veprek, R.F. Zhang, and A.S. Argon, J. Superhard Mater. 33, 409 (2011).
http://dx.doi.org/10.3103/S1063457612060068
91.
91. R. F. Zhang, D. Legut, Z.J. Lin, Y.S. Zhao, H.K. Mao, and S. Veprek, Phys. Rev. Lett. 108, 255502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.255502
92.
92. H. Y. Chung, J.M. Yang, S.H. Tolbert, and R.B. Kaner, J. Mater. Res. 23, 1797 (2008).
http://dx.doi.org/10.1557/JMR.2008.0221
93.
93. J. Yang, H. Sun, and C.F. Chen, J. Am. Chem. Soc. 130, 7200 (2008).
http://dx.doi.org/10.1021/ja801520v
94.
94. R. F. Zhang, D. Legut, R. Niewa, A.S. Argon, and S. Veprek, Phys. Rev. B 82, 104104 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.104104
95.
95. H. Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, and R.B. Kaner, Science 316, 436 (2007).
http://dx.doi.org/10.1126/science.1139322
96.
96. M. Calandra and F. Mauri, Phys. Rev. Lett. 101, 016401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.016401
97.
97. V. L. Solozhenko, O. Kurakevych, D. Andrault, Y. Le Godec, and M. Mezouar, Phys. Rev. Lett. 102, 015506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015506
98.
98. R. F. Zhang, S. Veprek, and A.S. Argon, Phys. Rev. B 80, 233401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.233401
99.
99. C. Jiang, Z. Lin, and Y. Zhao, Phys. Rev. B 80, 184101 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.184101
100.
100. S. Yip, Nature 391, 532 (1998);
http://dx.doi.org/10.1038/35254
100. S. Yip, Nature Mater. 3, 11 (2004).
http://dx.doi.org/10.1038/nmat1053
101.
101. A. S. Argon and S. Yip, Philos. Mag. Lett. 86, 713 (2006).
http://dx.doi.org/10.1080/09500830600986091
102.
102. V. L. Solozhenko, D. Andrault, G. Fiquet, M. Mezouar, and D.C. Rubie, Appl. Phys. Lett. 78, 1385 (2001).
http://dx.doi.org/10.1063/1.1337623
103.
103. Y. Zhang, H. Sun, and C.F. Chen, Phys. Rev. Lett. 93, 195504 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.195504
104.
104. E. Roduner, Nanoscopic Materials: Size DependentPhenomena (RSC, Cambridge, 2006).
105.
105. D. Vollath, Nanomaterials: An Introduction to Synthesis,Properties, and Applications (Wiley-VCH Verlag, Weinheim, 2008).
106.
106. G. Cao, Nanostructures & Nanomaterials(Imperial College, London, 2004).
107.
107. C. C. Koch, I.A. Ovidko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials, Fundamentals,and Applications (Cambridge University, Cambridge, 2007).
108.
108. C. C. Koch, R.O. Scattergood, M. Saber, and H. Kotan, J. Mater. Res. 28, 1785 (2013).
http://dx.doi.org/10.1557/jmr.2012.429
109.
109. J. Weissmüller, NanoStruct. Mater. 3, 261 (1993).
http://dx.doi.org/10.1016/0965-9773(93)90088-S
110.
110. R. Kirchheim, Acta Mater. 50, 413 (2002).
http://dx.doi.org/10.1016/S1359-6454(01)00338-X
111.
111. R. Kirchheim, Acta Mater. 55, 5129 (2007);
http://dx.doi.org/10.1016/j.actamat.2007.05.047
111. R. Kirchheim, Acta Mater., 55, 5139 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.05.033
112.
112. J. R. Trelewicz and C.A. Schuh, Phys. Rev. B 79, 094112 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094112
113.
113. T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).
http://dx.doi.org/10.1126/science.1224737
114.
114. J. R. Weertman, Science 337, 921 (2012).
http://dx.doi.org/10.1126/science.1226724
115.
115. A. Barna, P.B. Barna, G. Radnoczi, F.M. Reicha, and L. Toth, Phys. Status Solidi 55, 427 (1979).
http://dx.doi.org/10.1002/pssa.2210550210
116.
116. P. B. Barna, M. Adamik, G. Safran, B. Pecz, A. Bergauer, and H. Bangert, Phys. Status Solidi 146, 317 (1994).
http://dx.doi.org/10.1002/pssa.2211460127
117.
117. P. B. Barna and M. Adamik, Thin Solid Films 317, 27 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00503-8
118.
118. M. Adamik, P.B. Barna, and I. Tomov, Thin Solid Films 317, 64 (1998).
http://dx.doi.org/10.1016/S0040-6090(97)00661-5
119.
119. D. Biro, A. Kovacs, F. Misjak, T. Szüts, and P.B. Barna, Surf. Coat. Technol. 180–181, 425 (2004).
http://dx.doi.org/10.1016/j.surfcoat.2003.10.124
120.
120. S. Veprek, H.-D. Männling, M. Jilek, and P. Holubar, Mater. Sci. Eng., A 366, 202 (2004).
http://dx.doi.org/10.1016/j.msea.2003.08.052
121.
121. M. W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, 3rded. (1985)
121. M. W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, [J. Phys. Chem. Ref. Data 14 (1985)].
122.
122. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).
http://dx.doi.org/10.1126/science.1167641
123.
123. Y. Tian et al., Nature 493, 385 (2013).
http://dx.doi.org/10.1038/nature11728
124.
124. E. O. Hall, Proc. Phys. Soc. London, Sect. B 64, 747 (1951).
http://dx.doi.org/10.1088/0370-1301/64/9/303
125.
125. N. J. Petch, J. Iron Steel Inst., London 174, 25 (1953).
126.
126. A. S. Argon, in Comprehensive Composite Materials,edited by A. Kelly, C. Zweben, and T.-W. Chou (Pregamon, Oxford, 2000), Vol. 1, p. 763.
127.
127. R. O. Ritchie, Nature Mater. 10, 817 (2011).
http://dx.doi.org/10.1038/nmat3115
128.
128. A. S. Argon, The Physics of Deformation and Fracture ofPolymers (Cambridge University, Cambridge, 2013).
129.
129. R. W. Siegel and G.E. Fougere, Nanostruct. Mater. 6, 205 (1995).
http://dx.doi.org/10.1016/0965-9773(95)00044-5
130.
130. N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dimitrev, O.O. Kurakevich, and L. Dubrovinsky, Appl. Phys. Lett. 90, 101912 (2007).
http://dx.doi.org/10.1063/1.2711277
131.
131. V. L. Solozhenko, O.O. Kurakevych, and Y. Le Godec, Adv. Mater. 24, 1540 (2012).
http://dx.doi.org/10.1002/adma.201104361
132.
132. V. L. Solozhenko, private communication (2012).
133.
133. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen, Nature 391, 561 (1998).
http://dx.doi.org/10.1038/35328
134.
134. J. E. Carsley, J. Ning, W.W. Milligan, S.A. Hackney, and E.C. Aifantis, Nanostruct. Mater. 5, 441 (1995).
http://dx.doi.org/10.1016/0965-9773(95)00257-F
135.
135. S. Veprek, F.-A. Sarott, and Z. Iqbal, Phys. Rev. B 36, 3344 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.3344
136.
136. A. Pelisson, M. Parlinska-Wojtan, H.J. Hug, and J. Patscheider, Surf. Coat. Technol. 202, 884 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.05.094
137.
137. C. A. Pignedoli, D. Passerone, H.J. Hug, A. Pelisson-Schecker, and J. Patscheider, Appl. Phys. Lett. 96, 071908 (2010).
http://dx.doi.org/10.1063/1.3323093
138.
138. A. Pelisson, H.J. Hug, and J. Patscheider, J. Appl. Phys. 108, 023508 (2010).
http://dx.doi.org/10.1063/1.3460099
139.
139. E. Lewin, D. Loch, A. Montagne, A.P. Ehiasarian, and J. Patscheider, “Comparison of Al-Si-N nanocomposite coatingsdeposited by HIPIMS and DC magnetron sputtering,” Surf. Coat. Technol. (inpress).
http://dx.doi.org/10.1016/j.surfcoat.2013.06.076
140.
140. T. K. Chen, M.S. Wong, T.T. Shun, and J.W. Yeh, Surf. Coat. Technol. 200, 1361 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.08.081
141.
141. C. H. Lin, J.G. Duh, and J.W. Yeh, Surf. Coat. Technol. 201, 6304 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.11.041
142.
142. H. W. Chang, P.K. Huang, A. Davison, J.W. Yeh, C.H. Tsau, and C.C. Yang, Thin Solid Films 516, 6402 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.01.019
143.
143. P. K. Huang and J.W. Yeh, J. Phys. D: Appl. Phys. 42, 115401 (2009).
http://dx.doi.org/10.1088/0022-3727/42/11/115401
144.
144. P.-K. Huang and J.W. Yeh, Thin Solid Films 518, 180 (2009);
http://dx.doi.org/10.1016/j.tsf.2009.06.020
144. P.-K. Huang and J.W. Yeh, Scr. Mater. 62, 105 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2009.09.015
145.
145. C. W. Tsai, S.W. Lai, K.H. Cheng, M.H. Tsai, A. Davison, C.H. Tsau, and J.W. Yeh, Thin Solid Films 520, 2613 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.11.025
146.
146. M. I. Lin, M.H. Tsai, W.J. Shen, and J.W. Yeh, Thin Solid Films 518, 2732 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.10.142
147.
147. G. S. Fox-Rabinovich, S.C. Veldhuis, G.K. Dosbaeva, K. Yamamoto, A.I. Kovalev, D.L. Wainstein, I.S. Gershman, L.S. Shuster, and B.D. Beake, J. Appl. Phys. 103, 083510 (2008).
http://dx.doi.org/10.1063/1.2904907
148.
148. C. H. Lai, K.H. Cheng, S.J. Lin, and J.W. Yeh, Surf. Coat. Technol. 202, 3732 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.01.014
149.
149. S. Y. Lin, S.Y. Chang, Y.C. Huang, F.S. Shieu, and J.W. Yeh, Surf. Coat. Technol. 206, 5096 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.06.035
150.
150. D. C. Tsai, S.C. Liang, Z.C. Chang, T.N. Lin, M.H. Shiao, and F.S. Shieu, Surf. Coat. Technol. 207, 293 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.07.004
151.
151. V. Braic, A. Valdescu, M. Balaceanu, C.R. Luculescu, and M. Braic, Surf. Coat. Technol. 211, 117 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2011.09.033
152.
152. I. Endler, M. Höhn, J. Schmidt, S. Scholz, M. Herrmann, and M. Knaut, Surf. Coat. Technol. 215, 133 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.10.067
153.
153. M.-H. Hsieh, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Surf. Coat. Technol. 221, 118 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2013.01.036
154.
154. P. Rogl and J.C. Schuster, Phase Diagrams of Ternary Boron Nitride andSilicon Nitride Systems (ASM International, The Materials InformationSociety, Materials Park, OH, 1992).
155.
155. M. Hillert, Phase Equilibria, Phase Diagrams, and PhaseTransformations: Their Thermodynamic Basis (CambridgeUniversity, Cambridge, 1998).
156.
156. W. W. Jian, G.M. Chen, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013).
http://dx.doi.org/10.1080/21663831.2013.765927
157.
157. R. F. Zhang and S. Veprek, Mater. Sci. Eng., A 424, 128 (2006).
http://dx.doi.org/10.1016/j.msea.2006.03.017
158.
158. S. Veprek, H.-D. Männling, P. Karvankova, and J. Prochazka, Surf. Coat. Technol. 200, 3876 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2004.11.023
159.
159. D. A. Porter and K.E. Easterling, Phase Transformations in Metals andAlloys, 2nd ed. (Stanley Thornes, Cheltenham, 2001).
160.
160. H. Schmalzried, Chemical Kinetics of Solids(VCH Verlag, Weinheim, 1995).
161.
161. The term “spinodal” was introduced by Van der Waals in order to describe that part of thebinodal line in his isotherm between the inflection points where the second derivative of pressurewith volume is negative, corresponding to an apparently negative compressibility (Ref. 162). The negative second derivative means an inherent instabilitybecause any small concentration fluctuation will decrease the total energy of the solution and thedecomposition occurs spontaneously. The positive second derivative means that such a fluctuationincreases the total energy of the solution, i.e., the decomposition of the thermodynamicallyunstable solution requires activation energy and entropy for the formation of the nuclei.
162.
162. Van der Waals, “Over de Continuiteit van den Gas-enVloeistoftoestand,” Ph.D. dissertation (University of Leiden,Leiden, 1873);
162.English translation: On the Continuity ofthe Gaseous and Liquid States, edited by J. R. Rowlinson(North-Holland, Amsterdam, 1988), p. 254.
163.
163. J. Zarzycki, Glasses and the Vitreous State(Cambridge University, Cambridge, 1991).
164.
164. J. Prochazka, P. Karvankova, M. G.J. Veprek-Heijman, and S. Veprek, Mater. Sci. Eng., A 384, 102 (2004).
http://dx.doi.org/10.1016/j.msea.2004.05.046
165.
165. M. Diserens, J. Patscheider, and F. Levy, Surf. Coat. Technol. 120–121, 158 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00481-8
166.
166. F. Vaz, L. Rebouta, S. Ramos, M.F. da Silva, and J.C. Soares, Surf. Coat. Technol. 108–109, 236 (1998).
http://dx.doi.org/10.1016/S0257-8972(98)00620-3
167.
167. F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J.V. Riviere, and J. Bessa e Sousa, Surf. Coat. Technol. 120–121, 166 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00450-8
168.
168. R. F. Zhang and S. Veprek, Thin Solid Films 516, 2264 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.134
169.
169. S. Christiansen, M. Albrecht, H.P. Strunk, and S. Veprek, J. Vac. Sci. Technol. B 16, 19 (1998).
http://dx.doi.org/10.1116/1.589778
170.
170. P. Holubář, SHM Ltd., Průmyslová 3, CZ-787 01 Šumperk, Czech Republic,private communication (2003).
171.
171. P. B. Barna, I. Kovács, G. Radnóczi, B. Pécz, and S. Veprek, “Experimental evidence of Si3N4interfacial phase encapsulating the TiN nanocrystals in TiN/Si3N4nanocomposite coatings deposited by reactive magnetron sputtering” (unpublished).
172.
172. S. Veprek and M. G.J. Veprek-Heijman, Surf. Coat. Technol. 201, 6064 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.08.112
173.
173. F. Tang, B. Gault, S.P. Ringer, P. Martin, A. Bendavid, and J.M. Cairney, Scr. Mater. 63, 192 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.03.050
174.
174. F. Tang B. Gault, S.P. Ringer, and J.M. Cairney, Ultramicroscopy 110, 836 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.03.003
175.
175. S. Veprek and M. G.J. Veprek-Heijman, Thin Solid Films 522, 274 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.08.048
176.
176. M. Kong, W. Zhao, L. Wie, and G. Li, J. Phys. D: Appl. Phys. 40, 2858 (2007).
http://dx.doi.org/10.1088/0022-3727/40/9/029
177.
177. J. Jiang, J. He, Y.H. Cheng, and E.I. Meletis, paper presented at the IC4N Conference at Corfu, Greece,June 16–20, 2013; “Microstructural analysis of TiSiN nanocomposite thin films by HRTEM,” Surf. Coat.Technol. (submitted).
178.
178. P. H. Mayrhofer, D. Music, and J.M. Schneider, Appl. Phys. Lett. 88, 071922 (2006).
http://dx.doi.org/10.1063/1.2177630
179.
179. R. F. Zhang and S. Veprek, Mater. Sci. Eng., A 448, 111 (2007).
http://dx.doi.org/10.1016/j.msea.2006.10.012
180.
180. R. F. Zhang and S. Veprek, Acta Mater. 55, 4615 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.04.029
181.
181. P. H. Mayrhofer, H. Willmann, and A.E. Reiter, Surf. Coat. Technol. 202, 4935 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.04.075
182.
182. S. Z. Li, Q.F. Fang, Q. Liu, Z.S. Li, J. Gao, P. Nesladek, J. Prochazka, M. G.J. Veprek-Heijman, and S. Veprek, Compos. Sci. Technol. 65, 735 (2005).
http://dx.doi.org/10.1016/j.compscitech.2004.10.007
183.
183. A. Flink, M. Beckers, J. Sjölén, T. Larsson, S. Braun, L. Karlsson, and L. Hultman, J. Mater. Res. 24, 2483 (2009).
http://dx.doi.org/10.1557/jmr.2009.0299
184.
184. J. Musil, P. Zeman, and P. Dohnal, Plasma Processes Polym. 4, S574 (2007).
http://dx.doi.org/10.1002/ppap.200731408
185.
185. J. Musil, Surf. Coat. Technol. 207, 50 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.05.073
186.
186. S. Sambasivan and W.T. Petuskey, J. Mater. Res. 9, 2362 (1994).
http://dx.doi.org/10.1557/JMR.1994.2362
187.
187. A. Niederhofer, P. Nesladek, H.-D. Männling, K. Moto, S. Veprek, and M. Jilek, Surf. Coat. Technol. 120–121, 173 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00451-X
188.
188. P. Zeman, private communication (2008).
189.
189. In majority of publications, the impurities are notreported, and in those where they were reported they have been in the range of 0.7 to several at. %.I don't quote all particular papers, but I hope that more attention will be devoted to this problemin the future.
190.
190. C. S. Sandu, F. Medjani, R. Sanjines, A. Karimi, and F. Levy, Surf. Coat. Technol. 201, 4219 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2006.08.002
191.
191. C. S. Sandu, S. Harada, R. Sanjines, and A. Cavaleiro, Surf. Coat. Technol. 204, 1907 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.11.045
192.
192. S. H. Sheng, R.F. Zhang, and S. Veprek, Acta Mater. 56, 968 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.10.050
193.
193. S. H. Sheng, R.F. Zhang, and S. Veprek, Acta Mater. 59, 297 (2011).
http://dx.doi.org/10.1016/j.actamat.2010.09.033
194.
194. S. H. Sheng, R.F. Zhang, and S. Veprek, Acta Mater. 61, 4226 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.03.048
195.
195. R. F. Zhang, S.H. Sheng, and S. Veprek, Acta Mater. 56, 4440 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.04.066
196.
196. P. Karvankova, M. G.J. Veprek-Heijman, D. Azinovic, and S. Veprek, Surf. Coat. Technol. 200, 2978 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2005.01.003
197.
197. S. H. Sheng, R.F. Zhang, and S. Veprek, Acta Mater. 59, 3498 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.02.023
198.
198. S. Veprek, P. Karvankova, and M.G. J. Veprek-Heijman, J. Vac. Sci. Technol. B 23, L17 (2005).
http://dx.doi.org/10.1116/1.2131086
199.
199. S. Hao, B. Delley, and C. Stampfl, Phys. Rev. B 74, 035424 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035424
200.
200. P. Karvankova, private communication (2004).
201.
201. A. C. Fischer-Cripps, S.J. Bull, and N. Schwarzer, Philos. Mag. 92, 1601 (2012).
http://dx.doi.org/10.1080/14786435.2011.652688
202.
202. Fischerscope H 100 Manual Version 2.2 issued in May 1991(in German).
203.
203. H.-H. Behncke, Härterei-Technische Mitteilungen 48, 3 (1993) (in German).
204.
204. S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).
http://dx.doi.org/10.1116/1.581977
205.
205. A. Erdemir, O.L. Eryilmaz, M. Urgen, K. Kazmanli, N. Mehta, and B. Prorok, Handbook of Nanomaterials edited by Y. Gogotsi (CRC, Boca Raton, FL, 2005), p. 685.
206.
206. P. Karvankova, “Superhard nc-TiN/a-BN/a-TiB2 andnc-MnN/a-metal nanocrystalline composite coatings,” Ph.D. dissertation (TechnicalUniversity Munich, 2003).
207.
207. S. Veprek, S. Mukherjee, P. Karvankova, H.-D. Männling, J.L. He, K. Moto, J. Prochazka, and A.S. Argon, Thin Solid Films 436, 220 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00590-X
208.
208. M. G. J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, and S. Veprek, Surf. Coat. Technol. 203, 3385 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.04.028
209.
209. E. Meyer, Zt. Vereins Deutscher Ingenieure 52, 645 (1908).
210.
210. S. Veprek, S. Mukherjee, P. Karvankova, H.-D. Männling, J.L. He, K. Moto, J. Prochazka, and A.S. Argon, J. Vac. Sci. Technol. A 21, 532 (2003).
http://dx.doi.org/10.1116/1.1558586
211.
211. A. R. Yavari, J.L. Lewandowski, and J. Eckert, Mater. Res. Soc. Bull. 32, 635 (2007).
http://dx.doi.org/10.1557/mrs2007.125
212.
212. D. C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M.D. Demetriou, and W.L. Johnson, Nature 451, 1085 (2008).
http://dx.doi.org/10.1038/nature06598
213.
213. S. Veprek, A.S. Argon, and R.F. Zhang, Philos. Mag. Lett. 87, 955 (2007).
http://dx.doi.org/10.1080/09500830701666139
214.
214. S. Hao, B. Delley, S. Veprek, and C. Stampfl, Phys. Rev. Lett. 97, 086102 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.086102
215.
215. S. Hao, B. Delley, and C. Stampfl, Phys. Rev. B 74, 035402 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035402
216.
216. R. F. Zhang, A.S. Argon, and S. Veprek, Phys. Rev. B 79, 245426 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245426
217.
217. S. G. Prilliman, S.M. Clark, A.P. Alivisatos, P. Karvankova, and S. Veprek, Mater. Sci. Eng., A 437, 379 (2006).
http://dx.doi.org/10.1016/j.msea.2006.07.126
218.
218. R. F. Zhang, A.S. Argon, and S. Veprek, Phys. Rev. Lett. 102, 015503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.015503
219.
219. V. I. Ivashchenko and S. Veprek, “QMD calculations currently in progress (2012)”(unpublished).
220.
220. R. F. Zhang, A.S. Argon, and S. Veprek, Phys. Rev. B 81, 245418 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245418
221.
221. B. Alling, E.I. Isaev, A. Flink, L. Hultman, and I.A. Abrikosov, Phys. Rev. B 78, 132103 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.132103
222.
222. T. Marten, E.I. Isaev, B. Alling, L. Hultman, and I.A. Abrikosov, Phys. Rev. B 81, 212102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.212102
223.
223. V. I. Ivashchenko, S. Veprek, P. E.A. Turchi, and V.I. Shevchenko, Phys. Rev. B 85, 195403 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195403
224.
224. S. H. Tolbert and A.P. Alivisatos, Annu. Rev. Phys. Chem. 46, 595 (1995).
http://dx.doi.org/10.1146/annurev.pc.46.100195.003115
225.
225. A. S. Argon and M.J. Demkowicz, Philos. Mag. 86, 4153 (2006).
http://dx.doi.org/10.1080/14786430600596852
226.
226. M. J. Demkowicz and A.S. Argon, Phys. Rev. Lett. 93, 025505 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.025505
227.
227. V. I. Ivashchenko and S. Veprek, “First-principles molecular dynamics study of the thermalstability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparisonwith experiments,” Thin Solid Films (in press).
http://dx.doi.org/10.1016/j.tsf.2013.08.047
228.
228. M. Mrovec, M. Moseler, C. Elsässer, and P. Gumbsch, Prog. Mater. Sci. 52, 230 (2007).
http://dx.doi.org/10.1016/j.pmatsci.2006.10.012
229.
229. E. R. Margine, A.N. Kolmogorov, M. Reese, M. Mrovec, C. Elsässer, B. Meyer, R. Drautz, and D.G. Pettifor, Phys. Rev. B 84, 155120 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.155120
230.
230. S. Veprek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol. A 14, 46 (1996).
http://dx.doi.org/10.1116/1.579878
231.
231. S. Veprek, M. Haussmann, S. Reiprich, S.H. Li, and J. Dian, Surf. Coat. Technol. 86–87, 394 (1996).
http://dx.doi.org/10.1016/S0257-8972(96)02988-X
232.
232. A. Niederhofer, T. Bolom, P. Nesladek, K. Moto, C. Eggs, D.S. Patil, and S. Veprek, Surf. Coat. Technol. 146–147, 183 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01469-4
233.
233. S. Veprek and A.S. Argon, J. Vac. Sci. Technol. B 20, 650 (2002).
http://dx.doi.org/10.1116/1.1459722
234.
234. R. W. Hertzberg, Deformation and Fracture Mechanics ofEngineering Materials, 3rd ed. (John Wiley &Sons, New York, 1989).
235.
235. S. F. Pugh, Philos. Mag. 45, 823 (1954).
http://dx.doi.org/10.1080/14786440808520496
236.
236. See: http://www.platit.ch for Compendium 2012.
237.
237. S. Veprek and M. G.J. Veprek-Heijman, Surf. Coat. Technol. 202, 5063 (2008). Original reference: SHM Ltd.Průmyslová 3, CZ-787 01 Šumperk, Czech Republic, www.shm-cz.cz.
http://dx.doi.org/10.1016/j.surfcoat.2008.05.03
238.
238. T. Cselle, Vacuum's Best 2005(Wiley-VCH Verlag, Weinheim, 2005), p. 33.
239.
239. P. Holubar, M. Jilek, and M. Sima, Surf. Coat. Technol. 133–134, 145 (2000).
http://dx.doi.org/10.1016/S0257-8972(00)00956-7
240.
240. Y. X. Wang, S. Zhang, J.-W. Lee, W.S. Lew, D. Sun, and B. Li, “Toward hard yet tough CrAlSiN coatings via compositionalgrading,” Surf. Coat. Technol. (to be published).
http://dx.doi.org/10.1016/j.surfcoat.2012.03.036
241.
241. S. Zhang, D. Sun, and X. Zheng, J. Mater. Res. 20, 2754 (2005).
http://dx.doi.org/10.1557/JMR.2005.0357
242.
242. Y. X. Wang, S. Zhang, Y.W. Lee, W.S. Lew, and B. Li, Appl. Surf. Sci. 265, 418 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.11.022
243.
243. See: htpp://www.shm-cz.cz for Company SHM s.r.o.
244.
244. P. H. Mayrhofer, C. Mitterer, J.G. Wen, J.E. Greene, and I. Petrov, Appl. Phys. Lett. 86, 131909 (2005).
http://dx.doi.org/10.1063/1.1887824
245.
245. P. Losbichler and C. Mitterer, Surf. Coat. Technol. 97, 567 (1997).
http://dx.doi.org/10.1016/S0257-8972(97)00331-9
246.
246. C. Mitterer, J. Solid State Chem. 133, 279 (1997).
http://dx.doi.org/10.1006/jssc.1997.7456
247.
247. R. Wiedemann and H. Oettel, Surf. Eng. 14, 299 (1998).
248.
248. M. Berger, L. Karlsson, M. Larsson, and S. Hogmark, Thin Solid Films 401, 179 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01481-X
249.
249. J. Neidhardt, S. Mraz, J.M. Schneider, E. Strub, W. Bohne, B. Liedke, W. Möller, and C. Mitterer, J. Appl. Phys. 104, 063304 (2008).
http://dx.doi.org/10.1063/1.2978211
250.
250. P. Hammer, A. Steiner, R. Villa, M. Baker, P.N. Gibson, J. Haupt, and W. Gissler, Surf. Coat. Technol. 68/69, 194 (1994).
http://dx.doi.org/10.1016/0257-8972(94)90159-7
251.
251. J. Neidhardt, Z. Czigany, B. Sartory, R. Tessadri, M. O’Sullivan, and C. Mitterer, Acta Mater. 54, 4193 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.05.014
252.
252. J. Neidhardt, M. O’Sullivan, A.E. Reiter, W. Rechberger, W. Grogger, and C. Mitterer, Surf. Coat. Technol. 201, 2553 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2006.04.031
253.
253. J. Neidhardt, Z. Czigany, B. Sartory, R. Tessadri, and C. Mitterer, Int. J. Refract. Met. Hard Mater. 28, 23 (2010).
http://dx.doi.org/10.1016/j.ijrmhm.2009.07.016
254.
254. P. H. Mayrhofer, C. Mitterer, J.G. Wen, I. Petrov, and J.E. Greene, J. Appl. Phys. 100, 044301 (2006).
http://dx.doi.org/10.1063/1.2222406
255.
255. K. Polychronopoulou, J. Neidhardt, C. Rebholz, M.A. Baker, M. O’Sullivan, A.E. Reiter, A.E. Gunnaes, K. Ginnakopoulos, and C. Mitterer, J. Mater. Res. 23, 3048 (2008).
http://dx.doi.org/10.1557/JMR.2008.0370
256.
256. K. Polychronopoulou et al., Surf. Coat. Technol. 204, 246 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.07.009
257.
257. W. Gao, F. Xie, and K. Jia, Adv. Mater. Res. 335–336, 502 (2011).
http://dx.doi.org/10.4028/www.scientific.net/AMR.335-336.502
258.
258. B. Wang, F. Xie, and K. Jia, Appl. Mech. Mater. 110–116, 1020 (2012).
http://dx.doi.org/10.4028/www.scientific.net/AMM.110-116.1020
259.
259. P. Karvankova, M. G.J. Veprek-Heijman, M.F. Zawrah, and S. Veprek, Thin Solid Films 467, 133 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.03.046
260.
260. J. Ramm, M. Ante, T. Bachmann, B. Widrig, H. Brändle, and M. Döbeli, Surf. Coat. Technol. 202, 876 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.05.044
261.
261. H. Klostermann, B. Böcher, F. Fietzke, T. Modes, and O. Zyvitzki, Surf. Coat. Technol. 200, 760 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.02.120
262.
262. I. Zukerman, V.N. Zhitomirsky, G. Beit-Ya’akov, R.L. Boxman, A. Raveh, and S.K. Kim, J. Mater. Sci. 45, 6379 (2010).
http://dx.doi.org/10.1007/s10853-010-4734-7
263.
263. M. Jilek, private communication (2012).
264.
264. F. G. Ferre, E. Bertarelli, A. Chiodoni, D. Carnelli, D. Gastaldi, P. Vena, M.G. Beghi, and F. Di Fonzo, Acta Mater. 61, 2662 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.01.050
265.
265. D. A. Jerebtsov, G.G. Mikhailov, and S.V. Sverdina, Ceram. Int. 27, 247 (2001).
http://dx.doi.org/10.1016/S0272-8842(00)00071-7
266.
266. Spanende Fertigung, edited by K. Weinert, 5th ed.(Vulkan-Verlag, Essen, 2008).
267.
267. V. P. Swaminathan, R. Wei, and D.W. Gandy, J. Eng. Gas Turbines Power 132, 082104 (2010).
http://dx.doi.org/10.1115/1.3028567
268.
268. L. Ning, S.C. Veldhuis, and K. Yamamoto, Mach. Sci. Technol. 11, 45 (2007).
http://dx.doi.org/10.1080/10910340601172230
269.
269. M. Sokovic, B. Barisic, and S. Sladic, J. Mater. Process. Technol. 209, 4207 (2009).
http://dx.doi.org/10.1016/j.jmatprotec.2008.11.026
270.
270. J. Ramm, M. Ante, H. Bändle, A. Neels, A. Dommann, and M. Döbeli, Adv. Eng. Mater. 9, 604 (2007).
http://dx.doi.org/10.1002/adem.200700081
271.
271. L. de Abreu Vieira, M. Döbeli, A. Dommann, A. Kalchbrenner, A. Neels, J. Ramm, H. Rudigier, J. Thomas, and B. Widrig, Surf. Coat. Technol. 204, 1722 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.10.055
272.
272. T. Cselle, Werkzeug. Technik 127, 26 (2012).
273.
273. T. Cselle, O. Coddet, C. Galamand, P. Holubar, M. Jilek, J. Jilek, A. Lümkemann, and M. Morstein, J. Mach. Manuf. XLIX-E1, 19 (2009).
274.
274. S. Reich, M. Schadewald, and M. Bornemann, Mat.-wiss. u. Werkstofftech. 38, 108 (2007).
http://dx.doi.org/10.1002/mawe.200600115
275.
275. M. Piska, A. Polzer, P. Cihlarova, and D. Stankova, in Damage and Fracture Mechanics: FailureAnalysis of Engineering Materials and Structures, edited by T. Boukharouba, M. Elboujdaini, and G. Pluvinage (SpringerScience, Netherlands, 2009), p. 195.
276.
276. S. Carvalho, N. M.G. Parreira, M.Z. Silva, A. Cavaleiro, and L. Rebouta, Wear 274–275, 68 (2012).
http://dx.doi.org/10.1016/j.wear.2011.08.018
277.
277. R. Zitoune, V. Krishnaraj, B.S. Almabouacif, F. Collombet, M. Sima, and A. Jolin, Composites, Part B 43, 1480 (2012).
http://dx.doi.org/10.1016/j.compositesb.2011.08.054
278.
278. E. Torres, D. Ugues, Z. Brytan, and M. Perucca, J. Phys. D: Appl. Phys. 42, 105306 (2009).
http://dx.doi.org/10.1088/0022-3727/42/10/105306
279.
279. N. Norrby, M.P. Johansson, R. M’Saoubi, and M. Oden, Surf. Coat. Technol. 209, 203 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.08.068
280.
280. Y. Tanaka, N. Ichimiya, Y. Onischi, and Y. Yamada, Surf. Coat. Technol. 146–147, 215 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01391-3
281.
281. Y. Tanaka, T.M. Gür, M. Kelly, S.B. Hagstrom, T. Ikeda, K. Wakihira, and H. Satoh, J. Vac. Sci. Technol. A 10, 1749 (1992).
http://dx.doi.org/10.1116/1.577742
282.
282. Y. Tanaka, K. Sato, and N. Ichimiya, paper B5-2-1 presented at the International Conference onMetallurgical Coatings and Thin Films, San Diego, April 26, 2007. See also: http://www.hitachi-tool.co.jp.
283.
283. P. Karvankova, A. Karimi, O. Coddet, T. Cselle, and M. Morstein, MRS Proc. 890, 850890Y0818(2006).
http://dx.doi.org/10.1557/PROC-0890-Y08-18
284.
284. X.-Z. Ding, X.T. Zheng, and Y.C. Liu, Thin Solid Films 519, 1894 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.10.022
285.
285. W. Assmann, J.A. Davies, G. Dollinger, S. Forster, H. Huber, and R. Siegele, Nucl. Instrum. Methods Phys. Res. B 118, 242 (1996).
http://dx.doi.org/10.1016/0168-583X(95)01183-8
286.
286. G. Dollinger, M. Boulouedinine, A. Bergmaier, T. Faestermann, and C.M. Frey, Nucl. Instrum. Methods Phys. Res. B 118, 291 (1996).
http://dx.doi.org/10.1016/0168-583X(95)01469-1
287.
288.
288. J. Kohlscheen, H.-J. Knoche, M. Hipke, and A. Lümkemann, Key Eng. Mater. 438, 35 (2010).
http://dx.doi.org/10.4028/www.scientific.net/KEM.438.35
289.
289. T. Cselle, M. Mörstein, A. Lümkemann, and J. Prochazka, Schweizer Präzisions-Fertigungstechnik(Carl Hansen Verlag, Munich, 2007), Werkstatt + Betrieb 11, 30 (2009).
290.
290. T. Cselle, M. Mörstein, and A. Lümkemann, Werkzeug Technik 115, 1 (2010).
291.
291. M. Jilek, T. Cselle, P. Holubar, M. Morstein, M. G.J. Veprek-Heijman, and S. Veprek, Plasma Chem. Plasma Process. 24, 493 (2004).
http://dx.doi.org/10.1007/s11090-004-7929-3
292.
292. P. Holubář, SHM Ltd. (www.shm-cz.cz), Průmyslová 3, CZ-787 01 Šumperk, CzechRepublic, private communication (2005).
293.
293. M. Audronis, O. Jimenez, A. Leyland, and A. Matthews, J. Phys. D: Appl. Phys. 42, 085308 (2009).
http://dx.doi.org/10.1088/0022-3727/42/8/085308
294.
294. J. Martan and P. Benes, Thermochim. Acta 539, 51 (2012).
http://dx.doi.org/10.1016/j.tca.2012.03.029
295.
295. M. K. Samani, X.Z. Ding, S. Amini, N. Khosravian, J.Y. Cheong, G. Cheng, and B.K. Tay, Thin Solid Films 537, 108 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.04.029
296.
296. T. Cselle and A. Barimani, Surf. Coat. Technol. 76–77, 712 (1995).
http://dx.doi.org/10.1016/0257-8972(96)80011-9
297.
297. S. Veprek et al., MRS Proc. 750, 9 (2003).
http://dx.doi.org/10.1557/PROC-750-Y1.3
298.
298. H. Hertz, J. reine angewandte Mathematik 92, 156 (1882), available at http://resolver.sub.uni-goettingen.de/purl?PPN243919689.
299.
299. S. Timoshenko, Theory of Elasticity(McGraw-Hill, New York, 1934).
300.
300. R. M. Davies, Proc. R. Soc. Lond. A 197, 416 (1949).
http://dx.doi.org/10.1098/rspa.1949.0073
301.
301. R. G. Veprek, D.M. Parks, A.S. Argon, and S. Veprek, Mater. Sci. Eng., A 448, 3385 (2007).
302.
302. V. Brazkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V. Solozhenko, and Y. Zhao, Nature Mater. 3, 576 (2004).
http://dx.doi.org/10.1038/nmat1196
303.
303. M. F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).
http://dx.doi.org/10.1557/JMR.1986.0601
304.
304. W. C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
http://dx.doi.org/10.1557/JMR.1992.1564
305.
305. W. C. Oliver and G.M. Pharr, J. Mater. Res. 19, 3 (2004).
http://dx.doi.org/10.1557/jmr.2004.19.1.3
306.
306. T. Chudoba and N.M. Jennett, J. Phys. D: Appl. Phys. 41, 215407 (2008).
http://dx.doi.org/10.1088/0022-3727/41/21/215407
307.
307. S. A. Rodriguez, R. Martins Souza, and J. Alcala, Philos. Mag. 91, 1409 (2011).
http://dx.doi.org/10.1080/14786435.2010.502882
308.
308. A. C. Fischer-Cripps, P. Karvankova, and S. Veprek, Surf. Coat. Technol. 200, 5645 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2005.07.096
309.
309. A. C. Fischer-Cripps, Nanoindentation 2nd. ed. (Springer, NewYork, 2004).
310.
310. A. B. Sinani, N.K. Dynkin, P.V. Konevskiy, and L.A. Litvynov, Bull. Russ. Acad. Sci. Phys. 73, 1380 (2009).
http://dx.doi.org/10.3103/S1062873809100177
311.
311. W. Kollenberg, J. Mater. Sci. 23, 3321 (1988).
http://dx.doi.org/10.1007/BF00551312
312.
312. L. Prandtl, Zf. f. angew. Math. Mech. 1, 15 (1921).
http://dx.doi.org/10.1002/zamm.19210010102
313.
313. H. Hencky, Z. Angew. Math. Mech. 3, 241 (1923).
314.
314. A. Y. Ishlinsky, J. Appl. Math. Mech. 8, 201 (1944) (in Russian);
314.English translation by D. Tabor, Ministry of Supply, A.R.D., Theoretical Research Transl. No.2/47, 1947.
315.
315. R. Hill, The Mathematical Theory of Plasticity(Clarendon, Oxford, 1950).
316.
316. S. Veprek, M. H.J. Veprek-Heijman, and A. S. Argon, “The constraint factor of superhard nanocomposites”(unpublished).
317.
317. M. G. J. Veprek-Heijman, “ Non-linear finite elementmodeling” (internal report 2010).
318.
318. D. M. Marsh, Proc. R. Soc. London, Ser. A 279, 420 (1964).
http://dx.doi.org/10.1098/rspa.1964.0114
319.
319. A. S. Argon, in Glass Science and Technology, edited by D.R. Uhlmann and N. J. Kreidl (Academic, New York, 1980), Vol. 5, Chap. 3, pp. 97132.
320.
320. P. Karvankova and S. Veprek, “Annealing study of indentation into superhardnanocomposites” (unpublished).
321.
321. K. L. Johnson, Contact Mechanics(Cambridge University, Cambridge, 1985).
322.
322. I. M. Ward and J. Sweeney, The Mechanical Properties of SolidPolymers, 2nd ed. (John Wiley &Sons, Chichester, 2005).
323.
323. Z. Song and K. Komvopoulos, Mech. Mater. 61, 91 (2013).
http://dx.doi.org/10.1016/j.mechmat.2013.01.003
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/31/5/10.1116/1.4818590
Loading
/content/avs/journal/jvsta/31/5/10.1116/1.4818590
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/31/5/10.1116/1.4818590
2013-08-27
2016-12-02

Abstract

High elastic moduli do not guarantee high hardness because upon finite shear electronic instabilities often occur that resultin transformation to softer phases. Therefore, the author concentrates on the extrinsicallysuperhard nanostructured materials, which are the most promising. Decreasing crystallite sizeresults in strengthening and hardening because the grain boundaries impede the plasticity (e.g., Hall–Petch strengthening in case of dislocationactivity). However, this hardening is limited to a crystallite size down to 10–15 nm below whichsoftening due to grainboundary shear dominates. This softening can be reduced by forming low energygrain boundaries or a stronginterfacial layer. In such a way, much higher hardness enhancement can be achieved. The emphasis will be on theunderstanding of the mechanisms of the hardness enhancement. A special section deals with examples of the presentindustrial applications of such coatings on tools for machining in order to illustrate that thesematerials are already in large-scale use. In the last section, the author summarizes the openquestions and limitations for the preparation of the super- and ultrahard nanocomposite coatings and possible ways onhow to overcome them.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/31/5/1.4818590.html;jsessionid=6rzPiKj_4APiGE8b1qQaCLr0.x-aip-live-06?itemId=/content/avs/journal/jvsta/31/5/10.1116/1.4818590&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/31/5/10.1116/1.4818590&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/31/5/10.1116/1.4818590'
Right1,Right2,Right3,