Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/31/5/10.1116/1.4819316
1.
1. F. Faggin, M.E. Hoff, S. Mazor, and M. Shima, IEEE Micro 16, 10 (1996).
http://dx.doi.org/10.1109/40.546561
2.
2. Source: Intel Chip History poster.
3.
3. O. Auciello and D.L. Flamm, Plasma Diagnostics: Discharge Parameters andChemistry (Academic, NewYork, 1989).
4.
4. D. M. Manos and D.L. Flamm, Plasma Etching: An Introduction(Academic, New York, 1989).
5.
5. M. A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and MaterialsProcessing, 2nd ed. (John Wiley & Sons,Inc., New York, 2005).
6.
6. Y. P. Raizer, Gas Discharge Physics(Springer-Verlag, Berlin, 1991).
7.
7. B. Chapman, Glow Discharge Processes(Wiley-Interscience, USA, Canada, 1980).
8.
8. W. R. Grove, Philos. Trans. R. Soc. London 142, 87 (1852).
http://dx.doi.org/10.1098/rstl.1852.0008
9.
9. F. Simeon, in A Discussion on “The Making of ReflectingSurfaces” (The Fleetway, Imperial College of Science andTechnology, South Kensington, S.W.7, 1920), pp. 26.
10.
10. L. Tonks, Am. J. Phys. 35, 85 (1967).
http://dx.doi.org/10.1119/1.1974266
11.
11. I. Langmuir, Proc. Natl. Acad. Sci. U.S.A. 14, 627 (1928).
http://dx.doi.org/10.1073/pnas.14.8.627
12.
12. M. P. Lepselter, H.A. Waggener, R.W. MacDonald, and R.E. Davis, Proc. IEEE 53, 405 (1965).
http://dx.doi.org/10.1109/PROC.1965.3772
13.
13. M. P. Lepselter, Bell Syst. Tech. J. 45, 233 (1966).
http://dx.doi.org/10.1002/j.1538-7305.1966.tb00018.x
14.
14. C. M. Melliar-Smith, J. Vac. Sci. Technol. 13, 1008 (1976).
http://dx.doi.org/10.1116/1.569037
15.
15. R. Glang and L.V. Gregor, in Handbook of Thin Film Technology,edited by L. Maissel and R. Glang (McGraw-Hill, New York, 1970).
16.
16. K. R. Williams, K. Gupta, and M. Wasilik, J. Elelctromech. Syst. 12, 761 (2003).
http://dx.doi.org/10.1109/JMEMS.2003.820936
17.
17. M. P. Lepselter, US patent 3,442,701 (6 May 1969).
18.
18. P. D. Davidse, in 13th National Vacuum Symposium of theAVS, edited by W. J. Lange (SanFrancisco, 1966), pp. 5152.
19.
19. P. D. Davidse, J. Electrochem. Soc. 116, 100 (1969).
http://dx.doi.org/10.1149/1.2411707
20.
20. H. S. Butler and G.S. Kino, Phys. Fluids 6, 1346 (1963).
http://dx.doi.org/10.1063/1.1706905
21.
21. S. M. Irving, in ECS National Meeting(Fall, 1967), Abstract 180.
22.
22. S. M. Irving, in Kodak Photoresist Seminar Proceedings(1968), Vol. II, pp. 26.
23.
23. S. M. Irving, Solid State Technol. 14, 47 (1971).
24.
24. D. L. Tolliver, Solid State Technol. 23, 99 (1980).
25.
25. J. J. Thomson, Philos. Mag. Ser. 5 32, 321 (1891).
http://dx.doi.org/10.1080/14786449108620192
26.
26. S. M. Irving, K.E. Lemons, and G.E. Bobos, US patent 3,615,956 (26 Oct. 1971).
27.
27. T. C. Penn, IEEE Trans. Electron. Dev. ED26, 640 (1979).
http://dx.doi.org/10.1109/T-ED.1979.19471
28.
28. R. A. H. Heinecke, Solid State Electron. 18, 1146 (1975).
http://dx.doi.org/10.1016/0038-1101(75)90184-7
29.
29. R. A. H. Heinecke, Solid State Electron. 19, 1039 (1976).
http://dx.doi.org/10.1016/0038-1101(76)90186-6
30.
30. R. L. Bersin, Solid State Technol. 13, 39 (1970).
31.
31. A. R. Reinberg, US patent 3,757,733 (11Sept. 1973).
32.
32. N. Hosokawa, R. Matsuzaki, and T. Asamaki [Proceedings of the 6th International VacuumCongress, 1974], Jpn. J. Appl. Phys. Suppl. 2, 435 (1974).
33.
33. J. M. Harvilchuck, J.S. Logan, W.C. Metzger, and P.M. Schaible, US patent 3,994,793 (30Nov. 1976).
34.
34. J. A. Bondur, J. Vac. Sci. Technol. 13, 1023 (1976).
http://dx.doi.org/10.1116/1.569054
35.
35. J. W. Coburn and H.F. Winters, J. Vac. Sci. Technol. 16, 391 (1979).
http://dx.doi.org/10.1116/1.569958
36.
36. S. Somekh and H.C. Casey, Appl. Opt. 16, 126 (1977).
http://dx.doi.org/10.1364/AO.16.000126
37.
37. H. W. Lehmann and R. Widmar, J. Vac. Sci. Technol. 15, 319 (1978).
http://dx.doi.org/10.1116/1.569581
38.
38. F. D. Egitto, D. N.K. Wang, D. Maydan, and D. Benzing, Solid State Technol. 24, 71 (1981).
39.
39. H. R. Koenig and L.I. Maissel, IBM J. Res. Dev. 14, 168 (1970).
http://dx.doi.org/10.1147/rd.142.0168
40.
40. C. M. Horwitz, J. Vac. Sci. Technol. A 1, 60 (1983).
http://dx.doi.org/10.1116/1.572311
41.
41. D. Maydan, US patent 4,298,443 (3 Nov. 1981).
42.
42. J. Maher, Semicond. Int. 6, 110 (1983).
43.
43. O. A. Popov, High Density Plasma Sources, Design, Physics andPerformance (Noyes, Park Ridge,NJ, 1995).
44.
44. Y. Horiike, H. Okano, T. Yamazaki, and H. Horie, Jpn. J. Appl. Phys. 20, L817 (1981).
http://dx.doi.org/10.1143/JJAP.20.L817
45.
45. R. N. Castellano, Semiconductor Device Processing: TechnologyTrends in the VLSI Era (Gordon and Breach, New York, 1992).
46.
46. V. J. Minkiewicz and B.N. Chapman, Appl. Phys. Lett. 34, 192 (1979).
http://dx.doi.org/10.1063/1.90746
47.
47. J. H. Thomas and B. Singh, J. Vac. Sci. Technol. A 10, 3070 (1992).
http://dx.doi.org/10.1116/1.577867
48.
48. G. J. Gorin, U.S. Patent 4,446,223 (7 August 1984).
49.
49. R. Limpaechert and K.R. MacKenzie, J. Sci. Instrum. 44, 726 (1973).
50.
50. V. J. Minkiewicz, M. Chen, J.W. Coburn, B.N. Chapman, and K. Lee, Appl. Phys. Lett. 35, 393 (1979).
http://dx.doi.org/10.1063/1.91136
51.
51. E. H. Lenz, US patent 6,602,381 (5 Aug. 2003).
52.
52. V. Milosavljević, A.R. Ellingboe, C. Gaman, and J.V. Ringwood, J. Appl. Phys. 103, 083302 (2008).
http://dx.doi.org/10.1063/1.2903137
53.
53. R. A. Gottscho and K.J. Kanarik, in APS 64th Annual Gaseous ElectronicsConference (Salt Lake City, UT, 2011). Abstractavailable at: http://meetings.aps.org/link/BAPS.2011.GEC.HW1.1.
54.
54. S. Sriraman, K. Kanarik, and R.A. Gottscho, in AVS 59th National Symposium(American Vacuum Society, Tampa, FL, 2012), pp. 73.
55.
55. R. Dhindsa et al., US patent 7,405,521 (29 July 2008).
56.
56. W. T. Lai, C.J. Hwang, A.T. Wang, J.C. Yau, J.H. Liao, L.H. Chen, K. Adachi, and S. Okamoto, in Proceedings of the 28th International Symposiumon Dry Process (Institute of Electrical Engineers, Nagoya, Japan, 2006).
57.
57. E. Kawamura, M.A. Lieberman, A.J. Lichtenberg, and E.A. Hudson, J. Vac. Sci. Technol. A 25, 1456 (2007).
http://dx.doi.org/10.1116/1.2771561
58.
58. E. Kawamura, A.J. Lichtenberg, and M.A. Lieberman, Plasma Source Sci. Technol. 17, 045002 (2008).
http://dx.doi.org/10.1088/0963-0252/17/4/045002
59.
59. L. Xu, L. Chen, M. Funk, A. Ranjan, M. Hummel, R. Bravenec, R. Sundararajan, D.J. Economou, and V.M. Donnelly, Appl. Phys. Lett. 93, 261502 (2008).
http://dx.doi.org/10.1063/1.3062853
60.
60. L. Chen and M. Funk, in 63rd Annual Gaseous Electronics Conference and 7thInternational Conference on Reactive Plasmas (American Physical Society,Paris, France, 2010), AbstractCTP.00154.
61.
61. M. Honda, K. Yatsuda and L. Chen, in AVS 55th International Symposium(American Vacuum Society, Boston, MA, 2008), pp. 142.
62.
62. J. C. Forster and J.H. Keller, in High Density Plasma Sources, edited by O.A. Popov (NoyesPublications, Park Ridge, NJ, 1995),pp. 7699.
63.
63. S. Marks, J.P. Almerico, M.K. Gay, and F.G. Celii, Integr. Ferroelectr. 59, 333 (2003).
http://dx.doi.org/10.1080/714040682
64.
64. J. E. Stevens, in High Density Plasma Sources, edited by O.A. Popov (NoyesPublications, Park Ridge, NJ, 1995),pp. 312379.
65.
65. S. Kawamura, N. Itabashi, A. Makino, and M. Sakaguchi, Hitachi Rev. 51, 95 (2002).
66.
66. F. F. Chen, in High Density Plasma Sources, edited by O.A. Popov (NoyesPublications, Park Ridge, NJ, 1995),pp. 175.
67.
67. F. F. Chen, Plasma Phys. Controlled Fusion 33, 339 (1991).
http://dx.doi.org/10.1088/0741-3335/33/4/006
68.
68. R. Boswell, R. Porteous, A. Prytz, A. Bouchoule, and P. Ranson, Phys. Lett. A 91, 163 (1982).
http://dx.doi.org/10.1016/0375-9601(82)90823-4
69.
69. R. W. Boswell, Phys. Lett. A 33, 457 (1970).
http://dx.doi.org/10.1016/0375-9601(70)90606-7
70.
70. R. W. Boswell, A.J. Perry, and M. Emami, J. Vac. Sci. Technol. A 7, 3345 (1989).
http://dx.doi.org/10.1116/1.576148
71.
71. G. Campbell, R.W. Conn, and T. Shoji, US patent 4,990,229 (5 Feb. 1991).
72.
72. H. Sugai, I. Ghanashev, and M. Nagatsu, Plasma Sources Sci. Technol. 7, 192 (1998).
http://dx.doi.org/10.1088/0963-0252/7/2/014
73.
73. R. Bravenec, J. Zhao, L. Chen, and M. Funk, in 63rd Annual Gaseous Electronics Conference and 7thInternational Conference on Reactive Plasmas (American Physical Society,Paris, France, 2010), AbstractCTP.00059.
74.
74. J. Zhao, R. Bravenec, L. Chen, M. Funk, R. Sundararajan, Koji Koyama, T. Nozawa, and S. Samukawa, in APS 63rd Annual Gaseous Electronics Conferenceand 7th International Conference on Reactive Plasmas (American PhysicalSociety, Paris, France, 2010), AbstractBT2.0000.
75.
75. C. Cismaru, J.L. Shohet, and J.P. McVittie, Appl. Phys. Lett. 76, 2191 (2000).
http://dx.doi.org/10.1063/1.126330
76.
76. S. Samukawa, Y. Ishikawa, S. Kumagai, and M. Okigawa, Jpn. J. Appl. Phys. 40, L1346 (2001).
http://dx.doi.org/10.1143/JJAP.40.L1346
77.
77. S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, Jpn. J. Appl. Phys. 29, 2165 (1990).
http://dx.doi.org/10.1143/JJAP.29.2165
78.
78. N. Layadi, S.J. Molloy, A. Kornblit, J. T.C. Lee, T.M. Wolf, and D.E. Ibbotson, Plasma Etching in Microelectronics(American Vacuum Society, New York, 2001).
79.
79. B. Thedjoisworo, D. Cheung, and V. Crist, J. Vac. Sci. Technol. B 31, 021206 (2013).
http://dx.doi.org/10.1116/1.4792254
80.
80. D. Nest, D.B. Graves, S. Engelmann, R.L. Bruce, F. Weilnboeck, G.S. Oehrlein, C. Andes, and E.A. Hudson, Appl. Phys. Lett. 92, 153113 (2008).
http://dx.doi.org/10.1063/1.2912028
81.
81. A. R. Reinberg, in Plasma Etching—An Introduction,edited by D.M. Manos and D. L. Flamm (Academic, New York, 1989), pp. 358.
82.
82. P. A. Heimann and R.J. Schutz, J. Electrochem. Soc. 131, 881 (1984).
http://dx.doi.org/10.1149/1.2115720
83.
83. M. Haverlag and G.S. Oehrlein, J. Vac. Sci. Technol. B 10, 2412 (1992).
http://dx.doi.org/10.1116/1.586076
84.
84. N. Blayo, R.A. Cirelli, F.P. Klemens, and J. T.C. Lee, J. Opt. Soc. Am. A 12, 591 (1995).
http://dx.doi.org/10.1364/JOSAA.12.000591
85.
85. D. W. Mills, R.L. Allen and W.M. Duncan, Proc. SPIE 2637, 194 (1995).
http://dx.doi.org/10.1117/12.221311
86.
86. E. O. Degenkolb, C.J. Mogab, M.R. Goldrick, and J.E. Griffiths, Appl. Spectrosc. 30, 520 (1976).
http://dx.doi.org/10.1366/000370276774456895
87.
87. W. R. Harshbarger, R.A. Porter, T.A. Miller, and P. Norton, Appl. Opt. 31, 201 (1977).
88.
88. R. G. Poulsen, J. Vac. Sci. Technol. 14, 266 (1977).
http://dx.doi.org/10.1116/1.569137
89.
89. J. E. Greene, J. Vac. Sci. Technol. 15, 1718 (1978).
http://dx.doi.org/10.1116/1.569834
90.
90. K. Hirobe and T. Tsuchimoto, J. Electrochem. Soc. 127, 234 (1980).
http://dx.doi.org/10.1149/1.2129625
91.
91. P. A. Heimann, J.M. Moran, and R.J. Schutz, US patent 4,680,084 (14 July 1987).
92.
92. T. J. Dalton, W.T. Conner, and H.H. Sawin, J. Electrochem Soc. 141, 1893 (1994).
http://dx.doi.org/10.1149/1.2055023
93.
93. H. H. Sawin, W.T. Conner, T.J. Dalton, and E.M. Sachs, US patent 5,450,205 (12September 1995).
94.
94. D. L. Flamm and G.K. Herb, in Plasma Etching—An Introduction, edited by D.M. Manos and D. L. Flamm (Academic, New York, 1989), pp. 189.
95.
95. C. W. Jurgensen, R.R. Kola, A.E. Novembre, W.W. Tai, J. Frackoviak, L.E. Trimble, and G.K. Geller, J. Vac. Sci. Technol. B 9, 3280 (1991).
http://dx.doi.org/10.1116/1.585304
96.
96. A. Kornblit, in Lam Research Corporation TechnicalSymposium (San Francisco, CA, 1998) (unpublished).
97.
97. A. Kornblit, J.T.-C. Lee, H. Lee, and H.L. Maynard, US patent 6,228,277 (8 May 2001).
98.
98. N. Layadi, S.J. Molloy, T.C. Esry, T. Lill, J. Trevor, M.N. Grimbergen, and J. Chinn, J. Vac. Sci. Technol. B 17, 2630 (1999).
http://dx.doi.org/10.1116/1.591037
99.
99. D. L. Flamm, V.M. Donnelly, and J.A. Mucha, J. Appl. Phys. 52, 3633 (1981).
http://dx.doi.org/10.1063/1.329098
100.
100. E. A. Ogryzlo, D.E. Ibbotson, D.L. Flamm, and J.A. Mucha, J. Appl. Phys. 67, 3115 (1990).
http://dx.doi.org/10.1063/1.345388
101.
101. This quote is widely (and erroneously) attributed toAristotle (4th century BCE), based on misinterpretation of statement in Metaphysics, Book 8, Sec.1045a. See: Sheila Guberman and Gianfranco Minati, Dialogue about Systems (2007), Section C.4, pp.181–182. It is true, however, that Aristotle says that there are instances that “…you may have theparts and yet not have the whole, so that parts and whole cannot be the same” (Topics, Book VI, Sec.13, translated by W. A. Pickard-Cambridge).
102.
102. H. F. Winters, J.W. Coburn, and T.J. Chuang, J. Vac. Sci. Technol. B 1, 469 (1983).
http://dx.doi.org/10.1116/1.582629
103.
103. H. F. Winters and J.W. Coburn, Surf. Sci. Rep. 14, 162 (1992).
http://dx.doi.org/10.1016/0167-5729(92)90009-Z
104.
104. M. E. Barone and D.B. Graves, J. Appl. Phys. 78, 6604 (1995).
http://dx.doi.org/10.1063/1.360482
105.
105. P. R. McCurdy, K. H.A. Bogart, N.F. Dalleska, and E.R. Fisher, Rev. Sci. Instrum. 68, 1684 (1997).
http://dx.doi.org/10.1063/1.1147976
106.
106. E. R. Fisher, Plasma Process. Polym. 1, 13 (2004).
http://dx.doi.org/10.1002/ppap.200400011
107.
107. D. Liu, I.T. Martin, J. Zhou, and E.R. Fisher, Pure Appl. Chem. 78, 1187 (2006).
http://dx.doi.org/10.1351/pac200678061187
108.
108. N. E. Capps, N.M. Mackie, and E.R. Fisher, J. Appl. Phys. 84, 4736 (1998).
http://dx.doi.org/10.1063/1.368716
109.
109. J. Guha and V.M. Donnelly, J. Vac. Sci. Technol. A 27, 515 (2009).
http://dx.doi.org/10.1116/1.3106608
110.
110. V. M. Donnelly, J. Guha, and L. Stafford, J. Vac. Sci. Technol. A 29, 010801 (2011).
http://dx.doi.org/10.1116/1.3517478
111.
111. H. Singh, J.W. Coburn, and D.B. Graves, J. Vac. Sci. Technol. A 17, 2447 (1999).
http://dx.doi.org/10.1116/1.581981
112.
112. H. Singh, J.W. Coburn, and D.B. Graves, J. Vac. Sci. Technol. A 18, 299 (2000).
http://dx.doi.org/10.1116/1.582183
113.
113. J. Benedikt, A. Hecimovic, D. Ellerweg, and A. v. Keudell, J. Phys. D: Appl. Phys. 45, 403001 (2012).
http://dx.doi.org/10.1088/0022-3727/45/40/403001
114.
114. I. P. Herman, Optical Diagnostics for Thin FilmProcessing (Academic, SanDiego, 1996).
115.
115. K. H. A. Bogart and V.M. Donnelly, J. Appl. Phys. 86, 1822 (1999).
http://dx.doi.org/10.1063/1.370975
116.
116. V. M. Donnelly, J. Vac. Sci. Technol. A 14, 1076 (1996).
http://dx.doi.org/10.1116/1.580137
117.
117. R. A. Gottscho and V.M. Donnelly, J. Appl. Phys. 56, 245 (1984).
http://dx.doi.org/10.1063/1.333954
118.
118. M. V. Malyshev and V.M. Donnelly, J. Appl. Phys. 88, 6207 (2000).
http://dx.doi.org/10.1063/1.1321777
119.
119. N. C. M. Fuller, M.V. Malyshev, V.M. Donnelly, and I.P. Herman, Plasma Sources Sci. Technol. 9, 116 (2000).
http://dx.doi.org/10.1088/0963-0252/9/2/304
120.
120. G. Cunge, M. Kogelschatz, and N. Sadeghi, Plasma Sources Sci. Technol. 13, 522 (2004).
http://dx.doi.org/10.1088/0963-0252/13/3/019
121.
121. R. Khare, A. Srivastava, and V.M. Donnelly, J. Vac. Sci. Technol. A 30, 051306 (2012).
http://dx.doi.org/10.1116/1.4742319
122.
122. R. Khare, A. Srivastava, and V.M. Donnelly, J. Vac. Sci. Technol. A 30, 051307 (2012).
http://dx.doi.org/10.1116/1.4742322
123.
123. M. V. Malyshev, N. C.M. Fuller, K. H.A. Bogart, V.M. Donnelly, and I.P. Herman, Appl. Phys. Lett. 74, 1666 (1999).
http://dx.doi.org/10.1063/1.123648
124.
124. M. V. Malyshev, N. C.M. Fuller, K. H.A. Bogart, V.M. Donnelly, and I.P. Herman, J. Appl. Phys. 88, 2246 (2000).
http://dx.doi.org/10.1063/1.1288156
125.
125. J. W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 (1980).
http://dx.doi.org/10.1063/1.328060
126.
126. R. d'Agostino, F. Cramarossa, S.D. Benedictis, and G. Ferraro, J. Appl. Phys. 52, 1259 (1981).
http://dx.doi.org/10.1063/1.329748
127.
127. R. d'Agostino, F. Cramarossa, S.D. Benedictis, F. Fracassi, L. Laska, and K. Masek, Plasma Chem. Plasma Process. 5, 239 (1985).
http://dx.doi.org/10.1007/BF00615123
128.
128. V. M. Donnelly, D.L. Flamm, W.C. Dautremont-Smith, and D. J. Werder, J. Appl. Phys. 55, 242 (1984).
http://dx.doi.org/10.1063/1.332872
129.
129. M. Schabel, V.M. Donnelly, A. Kornblit, and W. Tai, J. Vac. Sci. Technol. A 20, 555 (2002).
http://dx.doi.org/10.1116/1.1454126
130.
130. E. Karakas, V.M. Donnelly, and D.J. Economou, Appl. Phys. Lett. 102, 034107 (2013).
http://dx.doi.org/10.1063/1.4789435
131.
131. J. P. Booth, O. Joubert, J. Pelleteir, and N. Sadeghi, J. Appl. Phys. 69, 618 (1991).
http://dx.doi.org/10.1063/1.347395
132.
132. R. E. Walkup, K.L. Saenger, and G.S. Selwyn, J. Chem. Phys. 84, 2668 (1986).
http://dx.doi.org/10.1063/1.450339
133.
133. A. R. Godfrey, S.J. Ullal, L.B. Braly, E.A. Edelberg, V. Vahedi, and E.S. Aydi, Rev. Sci. Instrum. 72, 3260 (2001).
http://dx.doi.org/10.1063/1.1382638
134.
134. S. J. Ullal, H. Singh, J. Daugherty, and V. Vahedi, J. Vac. Sci. Technol. A 20, 1195 (2002).
http://dx.doi.org/10.1116/1.1479733
135.
135. C. C. Cheng, K.V. Guinn, V.M. Donnelly, and I.P. Herman, J. Vac. Sci. Technol. A 12, 2630 (1994).
http://dx.doi.org/10.1116/1.579082
136.
136. C. C. Cheng, K.V. Guinn, I.P. Herman, and V.M. Donnelly, J. Vac. Sci. Technol. A 13, 1970 (1995).
http://dx.doi.org/10.1116/1.579638
137.
137. I. P. Herman, V.M. Donnelly, K.V. Guinn, and C.C. Cheng, Phys. Rev. Lett. 72, 2801 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2801
138.
138. J. Y. Choe, I.P. Herman, and V.M. Donnelly, J. Vac. Sci. Technol. A 15, 3024 (1997).
http://dx.doi.org/10.1116/1.580899
139.
139. J. Y. Choe, N. C.M. Fuller, V.M. Donnelly, and I.P. Herman, J. Vac. Sci. Technol. A 18, 2669 (2000).
http://dx.doi.org/10.1116/1.1290375
140.
140. P. F. Kurunczi, J. Guha, and V.M. Donnelly, J. Phys. Chem. B 109, 20989 (2005).
http://dx.doi.org/10.1021/jp054190h
141.
141. P. F. Kurunczi, J. Guha, and V.M. Donnelly, Phys. Rev. Lett. 96, 018306 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.018306
142.
142. J. Guha and V.M. Donnelly, J. Appl. Phys. 105, 113307 (2009).
http://dx.doi.org/10.1063/1.3129543
143.
143. J. Guha, V.M. Donnelly, and Y.-K. Pu, J. Appl. Phys. 103, 013306 (2008).
http://dx.doi.org/10.1063/1.2828154
144.
144. J. Guha, R. Khare, L. Stafford, V.M. Donnelly, S. Sirard, and E.A. Hudson, J. Appl. Phys. 105, 113309 (2009).
http://dx.doi.org/10.1063/1.3143107
145.
145. J. Guha, P. Kurunczi, L. Stafford, and V.M. Donnelly, J. Phys. Chem. C 112, 8963 (2008).
http://dx.doi.org/10.1021/jp800788a
146.
146. J. Guha, Y.-K. Pu, and V.M. Donnelly, J. Vac. Sci. Technol. A 25, 347 (2007).
http://dx.doi.org/10.1116/1.2699167
147.
147. G. S. Oehrlein, K.K. Chan, and M.A. Jaso, J. Appl. Phys. 64, 2399 (1988).
http://dx.doi.org/10.1063/1.341672
148.
148. G. S. Oehrlein, A.A. Bright, and S.W. Robey, J. Vat. Sci. Technol. A 6, 1989 (1988).
http://dx.doi.org/10.1116/1.575222
149.
149. G. S. Oehrlein, J.F. Rembetskii, and E.H. Payne, J. Vac. Sci. Technol. B 8, 1199 (1990).
http://dx.doi.org/10.1116/1.584896
150.
150. G. S. Oehrlein, K.K. Chan, M.A. Jaso, and G.W. Rubloff, J. Vac. Sci. Technol. A 7, 1030 (1989).
http://dx.doi.org/10.1116/1.576224
151.
151. K. V. Guinn and V.M. Donnelly, J. Appl. Phys. 75, 2227 (1994).
http://dx.doi.org/10.1063/1.356285
152.
152. K. V. Guinn, C.C. Cheng, and V.M. Donnelly, J. Vac. Sci. Technol. B 13, 214 (1995).
http://dx.doi.org/10.1116/1.588355
153.
153. O. Joubert, P. Czuprynski, F.H. Bell, P. Berruyer, and R. Blanc, J. Vac. Sci. Technol. B 15, 629 (1997).
http://dx.doi.org/10.1116/1.589305
154.
154. F. H. Bell and O. Joubert, J. Vac. Sci. Technol. B 15, 88 (1997).
http://dx.doi.org/10.1116/1.589259
155.
155. J. W. Coburn and H.F. Winters, J. Appl. Phys. 50, 3189 (1979).
http://dx.doi.org/10.1063/1.326355
156.
156. S. A. Vitale, H. Chae, and H.H. Sawin, J. Vac. Sci. Technol. A 19, 2197 (2001).
http://dx.doi.org/10.1116/1.1378077
157.
157. Z. H. Walker and E.A. Ogryzlo, J. Appl. Phys. 69, 548 (1991).
http://dx.doi.org/10.1063/1.347653
158.
158. Z. H. Walker and E.A. Ogryzlo, J. Appl. Phys. 69, 2635 (1991).
http://dx.doi.org/10.1063/1.348656
159.
159. H. F. Winters and D. Haarer, Phys. Rev. B 36, 6613 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.6613
160.
160. J. A. Levinson, E. S.G. Shaqfeh, M. Balooch, and A.V. Hamza, J. Vac. Sci. Technol. A 15, 1902 (1997).
http://dx.doi.org/10.1116/1.580658
161.
161. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989).
http://dx.doi.org/10.1063/1.102336
162.
162. J. P. Chang, J.C. Arnold, G. C.H. Zau, H.-S. Shin, and H.H. Sawin, J. Vac. Sci. Technol. A 15, 1853 (1997).
http://dx.doi.org/10.1116/1.580652
163.
163. H. C. Flaum, D. J.D. Sullivan, and A.C. Kummel, J. Phys. Chem. 98, 1719 (1994).
http://dx.doi.org/10.1021/j100057a028
164.
164. J. P. Chang and H.H. Sawin, J. Vac. Sci. Technol. A 15, 610 (1997).
http://dx.doi.org/10.1116/1.580692
165.
165. W. Jin, S.A. Vitale, and H.H. Sawin, J. Vac. Sci. Technol. A 20, 2106 (2002).
http://dx.doi.org/10.1116/1.1517993
166.
166. M. Balooch, M. Moalem, W.-E. Wang, and A.V. Hamza, J. Vac. Sci. Technol. A 14, 229 (1996).
http://dx.doi.org/10.1116/1.579924
167.
167. H. Shin, W. Zhu, V.M. Donnelly, and D.J. Economou, J. Vac. Sci. Technol. A 30, 021306 (2012).
http://dx.doi.org/10.1116/1.3681285
168.
168. M. A. Vyvoda, H. Lee, M.V. Malyshev, F.P. Klemens, M. Cerullo, V.M. Donnelly, D.B. Graves, A. Kornblit, and J. T.C. Lee, J. Vac. Sci. Technol. A 16, 3247 (1998).
http://dx.doi.org/10.1116/1.581530
169.
169. M. A. Vyvoda, M. Li, D.B. Graves, H. Lee, M.V. Malyshev, F.P. Klemens, J. T.C. Lee, and V.M. Donnelly, J. Vac. Sci. Technol. B 18, 820 (2000).
http://dx.doi.org/10.1116/1.591282
170.
170. B. A. Helmer and D.B. Graves, J. Vac. Sci. Technol. A 16, 3502 (1998).
http://dx.doi.org/10.1116/1.580993
171.
171. D. B. Graves and P. Brault, J. Phys. D: Appl. Phys. 42, 194011 (2009).
http://dx.doi.org/10.1088/0022-3727/42/19/194011
172.
172. T. D. Durbin, W.C. Simpson, V. Chakarian, D.K. Shuh, P.R. Varekamp, C.W. Lo, and J.A. Yarmoff, Surf. Sci. 316, 257 (1994).
http://dx.doi.org/10.1016/0039-6028(94)91218-1
173.
173. N. Layadi, V.M. Donnelly, and J. T.C. Lee, J. Appl. Phys. 81, 6738 (1997).
http://dx.doi.org/10.1063/1.365216
174.
174. J. W. Coburn, J. Vac. Sci. Technol. A 12, 1417 (1994).
http://dx.doi.org/10.1116/1.579330
175.
175. R. A. Barker, T.M. Mayer, and W.C. Pearson, J. Vac. Sci. Technol. B 1, 37 (1983).
http://dx.doi.org/10.1116/1.582539
176.
176. E. L. Barish, D.J. Vitkavage, and T.M. Mayer, J. Appl. Phys. 57, 1336 (1985).
http://dx.doi.org/10.1063/1.334536
177.
177. M. E. Barone, T.O. Robinson, and D.B. Graves, IEEE Trans. Plasma Sci. 24, 77 (1996).
http://dx.doi.org/10.1109/27.491699
178.
178. C. C. Cheng, K.V. Guinn, and V.M. Donnelly, J. Vac. Sci. Technol. B 14, 85 (1996).
http://dx.doi.org/10.1116/1.588439
179.
179. L. Desvoivres, L. Vallier, and O. Joubert, J. Vac. Sci. Technol. B 19, 420 (2001).
http://dx.doi.org/10.1116/1.1352727
180.
180. Silicon nitride can be either stoichiometric Si3N4 oreither silicon or nitrogen rich, depending on requirements. In case of plasma-enhanced deposition,hydrogen may be incorporated in the film as well. Unless otherwise specified, SiN refers to any ofthese materials.
181.
181. J. W. Butterbaugh, D.C. Gray, and H.H. Sawin, J. Vac. Sci. Technol. B 9, 1461 (1991).
http://dx.doi.org/10.1116/1.585451
182.
182. J. W. Coburn, J. Appl. Phys. 50, 5210 (1979).
http://dx.doi.org/10.1063/1.326660
183.
183. D. C. Gray, I. Tepermeister, and H.H. Sawin, J. Vac. Sci. Technol. B 11, 1243 (1993).
http://dx.doi.org/10.1116/1.586925
184.
184. T. E. F. M. Standaert, C. Hedlund, E.A. Joseph, G.S. Oehrlein, and T.J. Dalton, J. Vac. Sci. Technol. A 22, 53 (2004).
http://dx.doi.org/10.1116/1.1626642
185.
185. G. S. Oehrlein, Surf. Sci. 386, 222 (1997).
http://dx.doi.org/10.1016/S0039-6028(97)00304-X
186.
186. M. Schaepkens and G.S. Oehrlein, J. Electrochem. Soc. 148, C211 (2001).
http://dx.doi.org/10.1149/1.1348260
187.
187. A. Sankaran and M.J. Kushner, Appl. Phys. Lett. 82, 1824 (2003).
http://dx.doi.org/10.1063/1.1562333
188.
188. D. J. Economou and R.C. Alkire, J. Electrochem. Soc. 135, 941 (1988).
http://dx.doi.org/10.1149/1.2095842
189.
189. S. Murakawa and J.P. McVittie, Jpn. J. Appl. Phys., Part 1 33, 2184 (1994).
http://dx.doi.org/10.1143/JJAP.33.2184
190.
190. S. Murakawa and J.P. McVittie, Jpn. J. Appl. Phys., Part 1 33, 4446 (1994).
http://dx.doi.org/10.1143/JJAP.33.4446
191.
191. J. I. Ulacia and J.P. McVittie, J. Appl. Phys. 65, 1484 (1989).
http://dx.doi.org/10.1063/1.342962
192.
192. K. Hashimoto, Jpn. J. Appl. Phys., Part 1 32, 6109 (1993).
http://dx.doi.org/10.1143/JJAP.32.6109
193.
193. H. Ootera, T. Oomori, M. Tuda, and K. Namba, Jpn. J. Appl. Phys., Part 1 33, 4276 (1994).
http://dx.doi.org/10.1143/JJAP.33.4276
194.
194. S. Sakamori, T. Maruyama, N. Fujiwara, and H. Miyatake, Jpn. J. Appl. Phys., Part 1 36, 2521 (1997).
http://dx.doi.org/10.1143/JJAP.36.2521
195.
195. K. K. Chi, H.S. Shin, W.J. Yoo, C.O. Jung, Y.B. Koh, and M.Y. Lee, Jpn. J. Appl. Phys., Part 1 35, 2440 (1996).
http://dx.doi.org/10.1143/JJAP.35.2440
196.
196. K. Arita and T. Asano, Jpn. J. Appl. Phys., Part 1 35, 6534 (1996).
http://dx.doi.org/10.1143/JJAP.35.6534
197.
197. S. Ogino, N. Fujiwara, H. Miyatake, and M. Yoneda, Jpn. J. Appl. Phys., Part 1 35, 2445 (1996).
http://dx.doi.org/10.1143/JJAP.35.2445
198.
198. T. Kamata and H. Arimoto, J. Appl. Phys. 80, 2637 (1996).
http://dx.doi.org/10.1063/1.363179
199.
199. G. S. Hwang and K.P. Giapis, J. Vac. Sci. Technol. B 15, 70 (1997).
http://dx.doi.org/10.1116/1.589258
200.
200. K. P. Giapis and G.S. Hwang, Jpn. J. Appl. Phys., Part 1 37, 2281 (1998).
http://dx.doi.org/10.1143/JJAP.37.2281
201.
201. J. Matsui, N. Nakano, Z.L. Petrović, and T. Makabe, Appl. Phys. Lett. 78, 883 (2001).
http://dx.doi.org/10.1063/1.1347021
202.
202. M. Wang and M.J. Kushner, J. Appl. Phys. 107, 023309 (2010).
http://dx.doi.org/10.1063/1.3290873
203.
203. N. Posseme, T. Chevolleau, O. Joubert, L. Vallier, and P. Mangiagalli, J. Vac. Sci. Technol. B 21, 2432 (2003).
http://dx.doi.org/10.1116/1.1627337
204.
204. D. Eon, V. Raballand, G. Cartry, and C. Cardinaud, J. Phys. D: Appl. Phys. 40, 3951 (2007).
http://dx.doi.org/10.1088/0022-3727/40/13/007
205.
205. T. E. F. M. Standaert, P.J. Matsuo, S.D. Allen, G.S. Oehrlein, and T.J. Dalton, J. Vac. Sci. Technol. A 17, 741 (1999).
http://dx.doi.org/10.1116/1.581643
206.
206. T. E. F. M. Standaert, E.A. Joseph, G.S. Oehrlein, A. Jain, W.N. Gill, J. P.C. Wayner, and J.L. Plawsky, J. Vac. Sci. Technol. A 18, 2742 (2000).
http://dx.doi.org/10.1116/1.1290376
207.
207. A. Sankaran and M.J. Kushner, J. Appl. Phys. 97, 023307 (2005).
http://dx.doi.org/10.1063/1.1834979
208.
208. V. M. Donnelly, F.P. Klemens, T.W. Sorsch, G.L. Timp, and F.H. Baumann, Appl. Phys. Lett. 74, 1260 (1999).
http://dx.doi.org/10.1063/1.123518
209.
209. D. L. Flamm, in Plasma Etching—An Introduction, editedby D.M. Manos and D. L. Flamm (Academic, New York, 1989), pp. 91183.
210.
210. C. J. Mogab, in VLSI Technology, 1sted., edited by S. M. Sze (McGraw-Hill, New York, 1983), pp. 303345.
211.
211. C. J. Mogab, J. Electrochem. Soc. 124, 1262 (1977).
http://dx.doi.org/10.1149/1.2133542
212.
212. D. L. Flamm, D. N.K. Wang, and D. Maydan, J. Electrochem. Soc. 129, 2755 (1982).
http://dx.doi.org/10.1149/1.2123673
213.
213. O. Wada, J. Electrochem. Soc. 131, 2373 (1984).
http://dx.doi.org/10.1149/1.2115261
214.
214. A. Y. Feldblum, C.R. Nijander, W.P. Townsend, and C.M. Mayer-Costa, Proc. SPIE 1544, 200 (1991).
http://dx.doi.org/10.1117/12.49387
215.
215. R. A. Gottscho, C.W. Jurgensen, and D.J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992).
http://dx.doi.org/10.1116/1.586180
216.
216. O. Joubert, G.S. Oehrline, and M. Surendra, J. Vac. Sci. Technol. A 12, 665 (1994).
http://dx.doi.org/10.1116/1.578850
217.
217. D. J. Vitkavage, A. Kornblit, S.C. McNevin, D.P. Favreau, and R.S. Nicholas, in Proceedings of the Tegal PlasmaSeminar (Redwood City, CA, 1991), late submission, included in the proceedings.
218.
218. H. L. Bay and J. Bohdansky, Appl. Phys. 19, 421 (1979).
http://dx.doi.org/10.1007/BF00930106
219.
219. Y. Yamamura, Y. Itikawa, and N. Itoh, Nagoya University Institute of Plasma Physics ReportIPPJ-AM-26 (1983).
220.
220. M. R. Nakles, M.S. thesis (Virginia Polytechnic Instituteand State University, 2004).
221.
221. J. M. E. Harper, in Plasma Etching—An Introduction, editedby D.M. Manos and D. L. Flamm (Academic, New York, 1983), pp. 406423.
222.
222. A. Kornblit, M.J. Grieco, D.W. Peters, and T.E. saunders, Proc. SPIE 0775, 320 (1987).
http://dx.doi.org/10.1117/12.940441
223.
223. M. Vyvoda, H. Lee, M.V. Malyshev, F.P. Klemens, M. Cerullo, V.M. Donnelly, D.B. Graves, and A. K. J.T. C. Lee, J. Vac. Sci. Technol. A 16, 3247 (1998).
224.
224. K. H. A. Bogart, F.P. Klemens, M.V. Malyshev, J.I. Colonell, V.M. Donnelly, J. T.C. Lee, and J.M. Lane, J. Vac. Sci. Technol. A 18, 197 (2000).
http://dx.doi.org/10.1116/1.582157
225.
225. M. A. Vyvoda, H. Lee, M.V. Malyshev, F.P. Klemens, M. Cerullo, V.M. Donnelly, D.B. Graves, A. Kornblit, and J. T.C. Lee, in AVS 44th International Symposium(American Vacuum Society, San Jose,CA, 1997).
226.
226. K. H. A. Bogart, F.P. Klemens, J. Lane, M.V. Malyshev, V.M. Donnelly, A. Kornblit, and J. T.C. Lee, in AVS 45th International Symposium(American Vacuum Society, Baltimore,MD, 1998).
227.
227. N. Selamoglu, C.N. Bredbenner, T.A. Giniecki, and H.J. Stocker, J. Vac. Sci. Technol. B 9, 2530 (1991).
http://dx.doi.org/10.1116/1.585687
228.
228. P. Werbaneth, Z. Hasan, P. Rajora, and M. Rousey-Seidel, in International Conference on CompoundSemiconductor Manufacturing Technology (CS MANTECH, 1999).
229.
229. M. McNie et al., Proc. SPIE 4979, 34 (2003).
http://dx.doi.org/10.1117/12.478242
230.
230. N. A. Ciampa, J.I. Colonell, A. Kornblit and J. T.C. Lee, in AVS 43rd National Symposium(American Vacuum Society, Philadelphia,PA, 1996).
231.
231. C. Chu and T.A. Letson, US patent 7,208,399 (24 Apr. 2007); also filed with the World International Property Organization, 7 Dec. 1999 andpublished as WO 00/34984, 15 June 2000).
232.
232. C. J. D. Craigie, T. Sheehan, V.N. Johnson, S.L. Burkett, A.J. Moll, and W.B. Knowlton, J. Vac. Sci. Technol. B 20, 2229 (2002).
http://dx.doi.org/10.1116/1.1515910
233.
233. R. J. Shul, C.G. Willison, and L. Zhang, Proc. SPIE 3511, 1998).
http://dx.doi.org/10.1117/12.324308
234.
234. R. J. Shul and J.G. Fleming, in Handbook of Advanced Plasma ProcessingTechniques, edited by R. J. Shul and S. J. Pearton (Springer, New York, 2000), pp. 419458.
235.
235. J. D. Chinn, I. Adesida, and E.D. Wolf, J. Vac. sci. Technol. B 1, 1028 (1983).
http://dx.doi.org/10.1116/1.582668
236.
236. Freon® is DuPont's trademark for fluorinated orpartially fluorinated hydrocarbons, used mainly for refrigeration purposes (the electronic-gradeequivalent is marketed under the trademark Zyron®). It is commonly used in the literatureeven though many of these substances are not manufactured by DuPont. The Freon (or Zyron) numberingscheme follows what is known as the ‘DuPont 90 Rule’: If the number 90 is added to the Freon number,a three digit number is obtained; the first second and the third digits correspond to the number ofcarbon, hydrogen and fluorine atoms, respectively. Thus, adding the number 90 to 23 (Freon 23) willyield 113, corresponding to CHF3. If the number of bonds is not satisfied by the aboveprocedure, the missing atoms are Cl, thus Freon 11 will have one carbon, one fluorine, and threechlorine atoms (CFCl3). If bromine atoms are included in the molecule, the suffix B isadded, followed by the number of the bromine atoms (e.g., Freon 12B1–CBrClF2). Source:Michael Mocella (DuPont).
237.
237. L. M. Ephrath and E.J. Petrillo, J. Electrochem. Soc. 129, 2282 (1982).
http://dx.doi.org/10.1149/1.2123494
238.
238. D. C. Marra and E.S. Aydil, J. Vac. Sci. Technol. A 15, 2508 (1997).
http://dx.doi.org/10.1116/1.580762
239.
239. S. J. Fonash, J. Electrochem. Soc. 137, 3885 (1990).
http://dx.doi.org/10.1149/1.2086322
240.
240. J. M. Heddleson, M.W. Horn, S.J. Fonash, and D.C. Nguyen, J. Vac. Sci. Technol. B 6, 280 (1988).
http://dx.doi.org/10.1116/1.584024
241.
241. X. C. Mu, S.J. Fonash, A. Rohatgi, and J. Rieger, Appl. Phys. Lett. 48, 1147 (1986).
http://dx.doi.org/10.1063/1.96452
242.
242. X. C. Mu, S.J. Fonash, and R. Singh, Appl. Phys. Lett. 49, 67 (1986).
http://dx.doi.org/10.1063/1.97354
243.
243. G. S. Oehrlein, J. Appl. Phys. 59, 3053 (1986).
http://dx.doi.org/10.1063/1.336928
244.
244. G. S. Oehrlein, R.M. Tromp, Y.H. Lee, and E.J. Petrillo, Appl. Phys. Lett. 45, 420 (1984).
http://dx.doi.org/10.1063/1.95243
245.
245. J. P. Simko, G.S. Oehrlein, and T.M. Mayer, J. Electrochem. Soc. 138, 277 (1991).
http://dx.doi.org/10.1149/1.2085555
246.
246. H. Norström, H.-O. Blom, M. Ostling, A.N. Larsen, J. Keinonen, and S. Berg, J. Vac. Sci. Technol. B 9, 34 (1991).
http://dx.doi.org/10.1116/1.585787
247.
247. R. G. Frieser, F.J. Montillo, N.B. Zingerman, W.K. Chu, and S.R. Mader, J. Electrochem. Soc. 130, 2237 (1983).
http://dx.doi.org/10.1149/1.2119559
248.
248. M. Yamada, Y. Ito, K. Inazawa, A. Toure, K. Hinata, and H. Sakima, US patent 6,159,862 (12 Dec. 2000).
249.
249. T. Yanagida, US patent 5,338,399 (16Aug. 1994).
250.
250. P. Forster et al., in Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel onClimate Change (Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing),edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (CambridgeUniversity, Cambridge, England, 2007),pp. 212213.
251.
251. B. Ji, S. Motika, P. Badowski, S. Dheandhanoo, J.R. Stets, and E.J. Karwacki, Solid State Technol. 48, 45 (2005).
252.
252. J. K. Olthoff and K.E. Greenberg, J. Res. Natl. Inst. Stand. Technol. 100, 327 (1995).
http://dx.doi.org/10.6028/jres.100.025
253.
253. C. J. Radens and C.A. Fairchock, US patent 5,928,967 (27July 1999).
254.
254. H. J. Stocker, US patent 4,484,979 (27November 1984).
255.
255. C. Reyes-Betanzo, S.A. Moshkalyov, J.W. Swart, and A. C.S. Ramos, J. Vac. Soc. Technol. A 21, 461 (2003).
http://dx.doi.org/10.1116/1.1547703
256.
256. S. Lee, J. Oh, K. Lee, and H. Sohn, J. Vac. Sci. Technol. B 28, 131 (2010).
http://dx.doi.org/10.1116/1.3290752
257.
257. S. Kadomura, US patent 4,654,114 (31Mar. 1987).
258.
258. D. Thomas, Y. Song, and K. Powell, Solid State Technol. 44, 107 (2001).
259.
259. S. P. Murarka, Silicides for VLSI Applications(Academic, New York, 1983).
260.
260. J. S. Deslauriers and H.J. Levinstein, US patent 4,472,237 (18Sept. 1984).
261.
261. G. K. Herb, in MRS Proceedings (MaterialResearch Society, 1986), Vol. 68, p. 3.
262.
262. D. S. Fischl, G.W. Rodrigues, and D.W. Hess, J. Electrochem. Soc. 135, 2016 (1988).
http://dx.doi.org/10.1149/1.2097848
263.
263. E. Kobeda, N.J. Mazzeo, J.P. Gambino, H. Ng, G.L. Patton, J.D. Warnock, S. Basavaiah, J.F. White, and J.D. Cressler, J. Electrochem. Soc. 140, 3007 (1993).
http://dx.doi.org/10.1149/1.2220948
264.
264. H. Nakata, H. Nishioka, and H. Abe, J. Vac. Sci. Technol. 17, 1351 (1980).
http://dx.doi.org/10.1116/1.570669
265.
265. A. Kornblit, J.J. DeMarco, J. Garofalo, D.A. Mixon, A.E. Novembre, S. Vaidya, and T. Kook, J. Vac. Sci. Technol. B 13, 2944 (1995).
http://dx.doi.org/10.1116/1.588284
266.
266. R. Ditizio, P. Werbaneth, and J.-G. Zhu, Semicond. Manufact. Mag. 5, 90 (2004).
267.
267. R. M. Ranade, S.S. Ang, and W.D. Brown, J. Electrochem Soc. 140, 3676 (1993).
http://dx.doi.org/10.1149/1.2221148
268.
268. C. Zarowin, in Proceedings of the 4th International Conferenceon Plasma Chemistry (1979), 56 pp.
269.
269. C. Zarowin, Thin Solid Films 85, 33 (1981).
http://dx.doi.org/10.1016/0040-6090(81)90052-3
270.
270. F. T. Aldridge, J. Electrochem Soc. 142, 1563 (1995).
http://dx.doi.org/10.1149/1.2048613
271.
271. C. P. Chang et al., in IEDM Technical Digest (Washington, D.C., 1997), p. 661.
272.
272. C.-K. Yeon and H.-J. You, J. Vac. Sci. Technol. A 16, 1502 (1998).
http://dx.doi.org/10.1116/1.581177
273.
273. S. C. McNevin, J. Vac. Sci. Technol. B 8, 1185 (1990).
http://dx.doi.org/10.1116/1.584938
274.
274. F. P. Klemens et al., in The 192nd Meeting of the Electrochemical Societyand the 48th Annual Meeting of the International Society of Electrochemistry (TheElecrochemical Society, Paris, France, 1997), Electrochemical Society Proceedings, Vols. 97–30, p.85.
275.
275. L. Manchanda et al., in IEDM Technical Digest (San Francisco, CA, 2000), p. 23.
276.
276. C. Auth et al., Intel Technol. J. 12, 77 (2008).
277.
277. O. Joubert et al., in AVS 53rd International Symposium(American Vacuum Society, San Francisco,CA, 2006), p. 10.
278.
278. K. Pelhos, V.M. Donnelly, A. Kornblit, M.L. Green, R. B.V. Dover, L. Manchanda, Y. Hu, M. Morris, and E. Bower, J. Vac. Sci. Technol. A 19, 1361 (2001).
http://dx.doi.org/10.1116/1.1349721
279.
279. L. Sha and J.P. Chang, in AVS 49th International Symposium(American Vacuum Society, Denver, CO, 2002), p. 31.
280.
280. J. T. C. Lee et al., in 25th International Conference on Phenomena inIonized Gases (International Union of Pure and Applied Physics, Nagoya, Japan, July 18, 2001), Workshop I (1).
281.
281. M. Niwa, in 7th Annual SEMATECH Symposium, (SEMATECH,Tokyo, Japan, 2011).
282.
282. M. Matsui, T. Tatsumi, and M. Sekine, Plasma Sources Sci. Technol. 11, A202 (2002).
http://dx.doi.org/10.1088/0963-0252/11/3A/330
283.
283. J. Givens, S. Geissler, J. Lee, O. Cain, J. Marks, S. Geisler, and C. Cunningham, J. Vac. Sci. Technol. B 12, 427 (1994).
http://dx.doi.org/10.1116/1.587139
284.
284. J. Kim, C.W. Chu, C.J. Kang, W.S. Han, and J.T. Moon, J. Vac. Sci. Technol. B 20, 2065 (2002).
http://dx.doi.org/10.1116/1.1508819
285.
285. J. P. Roland, N.E. Hendrickson, D.D. Kessler, J. Donald E. Novy, and D.W. Quint, Hewlett Packard J. 34, 30 (1983).
286.
286. D. B. Fraser, in VLSI Technology, 1sted., edited by S. M. Sze (McGraw-Hill, New York, 1983), pp. 369372.
287.
287. H. J. Levinstein and D.N. Wang, US patent 4,256,534 (17 Mar. 1981).
288.
288. D. A. Danner, M. Dalvie, and D.W. Hess, J. Electrochem. Soc. 134, 669 (1987).
http://dx.doi.org/10.1149/1.2100529
289.
289. A. L. Keaton and D.W. Hess, J. Vac. Sci. Technol. A 3, 962 (1985).
http://dx.doi.org/10.1116/1.573361
290.
290. S. I. J. Ingrey, H.J. Nentwich, and R.G. Poulsen, US patent 4,030,967 (21 June 1977).
291.
291. W. R. Harshbarger, H.J. Levinstein, C.J. Mogab, and R.A. Porter, US patent 4,208,241 (17 June 1980).
292.
292. P. Czuprynski, O. Joubert, L. Vallier, M. Puttock, and M. Heitzmann, J. Vac. Sci. Technol. B 16, 147 (1998).
http://dx.doi.org/10.1116/1.589770
293.
293. T. Arikado, M. Sekine, H. Okano, and Y. Horiike, in International Electron Device Meeting(IEEE, Los Angeles, CA, 1986), pp. 5457.
294.
294. G. Cameron and A. Chambers, Semicond. Int. 12, 142 (1989).
295.
295. P. Czuprynski, O. Joubert, M. Heitzmann, D. Louis, C. Vizioz, and E. Lajoinie, J. Vac. Sci. Technol. B 15, 1000 (1997).
http://dx.doi.org/10.1116/1.589383
296.
296. R. H. Havemann and J.A. Hutchby, Proc. IEEE 89, 586 (2001).
http://dx.doi.org/10.1109/5.929646
297.
297. J. Kriz, C. Angelkort, M. Czekalla, S. Huth, D. Meinhold, A. Pohl, S. Schulte, A. Thamm, and S. Wallace, Microelectron. Eng. 85, 2128 (2008).
http://dx.doi.org/10.1016/j.mee.2008.05.034
298.
298. Metalwork, Encyclopædia Britannica Ultimate Reference Suite(Encyclopædia Britannica, Chicago, 2013).
299.
299. D. Moore, R. Carter, H. Cui, P. Burke, P. McGrath, S.Q. Gu, D. Gidley, and H. Peng, J. Vac. Sci. Technol. B 23, 332 (2005).
http://dx.doi.org/10.1116/1.1835315
300.
300. K. Takeda, Y. Miyawaki, S. Takashima, M. Fukasawa, K. Oshima, K. Nagahata, T. Tatsumi, and M. Hori, J. Appl. Phys. 109, 033303 (2011).
http://dx.doi.org/10.1063/1.3544304
301.
301. C. Labelle et al., in AVS 59th National Symposium(American Vacuum Society Tampa, FL, 2012), p. 148.
302.
302. C. B. Labelle et al., in Proc. SPIE 8328: Advanced Etch Technology forNanopatterning (SPIE, 2012), paper 83280C.
303.
303. International Technical Roadmap for Semiconductors (ITRS). Section: Interconnect(2011), 27 pp.
304.
304. H. Cui, S.J. Kirk, and D. Maloney, in IEEE/SEMI Advanced Semiconductor ManufacturingConference (Stresa, Italy, June 2007).
305.
305. D. Hisamoto et al., IEEE Trans. Electron Devices 47, 2320 (2000).
http://dx.doi.org/10.1109/16.887014
306.
306. X. Huang et al., IEEE Trans. Electron Devices 48, 880 (2001).
http://dx.doi.org/10.1109/16.918235
307.
307. X. Huang et al., in IEDM Technical Digest(IEEE, Washington DC, 1999), pp. 6770.
308.
308. C. Auth et al., in 2012 Symposium on VLSI Technology Digest ofTechnical Papers (2012), pp. 131132.
309.
309. H. Mendez, D.M. Fried, S.B. Samavedam, Thomas Hoffmann, and B.-Y. Nguyen, Solid State Technol. 52, 10 (2009).
310.
310. C. Auth, in Custom Integrated Circuits Conference(CICC) (IEEE, San Jose, CA, 2012), pp. 16.
311.
311. K. J. Kanarik, G. Kamarthy, and R.A. Gottscho, Solid State Technol. 55, 15 (2012).
312.
312. P. L. Jones and C.B. Labelle, in Proc. of SPIE 8328: Advanced Etch Technologyfor Nanopatterning (SPIE, 2012), paper 8328-12.
313.
313. K. J. Kuhn, IEEE Trans. Electron Devices 59, 1813 (2012).
http://dx.doi.org/10.1109/TED.2012.2193129
314.
314. K. J. Kuhn et al., in IEDM Technical Digest(IEEE, San Francisco, CA, 2012) pp. 811814.
315.
315. X. Mellhaoui, R. Dussart, A. Basillais, T. Tillocher, P. Lefaucheux, and P. Ranson, in AVS 50th International Symposium(Baltimore, MD, 2003), 145 pp.
316.
316. T. Tillocher, A. Basillais, X. Mellhaoui, P. Lefaucheux, M. Boufnichel, R. Dussart, and P. Ranson, in AVS 50th National Symposium (Baltimore,MD, 2003), pp. 35.
317.
317. X. Mellhaoui, R. Dussart, T. Tillocher, P. Lefaucheux, P. Ranson, M. Boufnichel, and L.J. Overzet, J. Appl. Phys. 98, 104901 (2005).
http://dx.doi.org/10.1063/1.2133896
318.
318. F. Laermer and A. Schilp, US patent 5,501,893 (26 March 1996).
319.
319. C. B. Labelle, V.M. Donnelly, G.R. Bogart, R.L. Opila, and A. Kornblit, J. Vac. Sci. Technol. A 22, 2500 (2004).
http://dx.doi.org/10.1116/1.1810165
320.
320. A. Kornblit et al., in Proceedings of the International Symposium onMicrofabricated Systems and MEMS VII, edited by J. L. Davidson, P. J. Hesketh, D. Misra, and S. Shoji (Electrochemical Society Honolulu, HI, 2004), pp. 11–25.
321.
321. G. R. Bogart et al., Proc. SPIE 3676, 171 (1999).
http://dx.doi.org/10.1117/12.351089
322.
322. S.-B. Wang and A.E. Wendt, J. Appl. Phys. 88, 643 (2000).
http://dx.doi.org/10.1063/1.373715
323.
323. M. C. M. v. d. Sanden, M.A. Blauw, F. Roozeboom, and W. M.M. Kessels, in AVS 54th International Symposium(Seattle, WA, 2007), 19 pp.
324.
324. H. T. Soh, C.P. Yue, A. McCarthy, Changsup Ryu, T.H. Lee, S.S. Wong, and C.F. Quate, Jpn. J. Appl. Phys. 38, 2393 (1999).
http://dx.doi.org/10.1143/JJAP.38.2393
325.
325. F. Pardo et al., in Hilton Head Conference(2006).
326.
326. B. N. Engel, N.D. Rizzo, J. Janesky, J.M. Slaughter, R. Dave, Mark DeHerrera, M. Durlam, and S. Tehrani, IEEE Trans. Nanotechnol. 1, 32 (2002).
http://dx.doi.org/10.1109/TNANO.2002.1005424
327.
327. W. Shen, D. Mazumdar, X. Zou, X. Liu, B.D. Schrag, and G. Xiao, Appl. Phys. Lett. 88, 182508 (2006).
http://dx.doi.org/10.1063/1.2201547
328.
328. K. B. Jung, E.S. Lambers, J.R. Childress, S.J. Pearton, M. Jenson, and J. A.T. Hurst, Appl. Phys. Lett. 71, 1255 (1997).
http://dx.doi.org/10.1063/1.119925
329.
329. K. B. Jung, E.S. Lambers, J.R. Childress, S.J. Pearton, M. Jenson, and J. A.T. Hurst, J. Vac. Sci. Technol. A 16, 1697 (1998).
http://dx.doi.org/10.1116/1.581287
330.
330. H. Cho, K.P. Lee, Y.B. Hahn, E.S. Lambers, and S.J. Pearton, J. Vac. Sci. Technol. A 18, 1273 (2000).
http://dx.doi.org/10.1116/1.582339
331.
331. I. Nakatani, IEEE Trans. Magn. 32, 4448 (1996).
http://dx.doi.org/10.1109/20.538896
332.
332. K. B. Jung, J. Hong, a.H. Cho, S. Onishi, D. Johnson, Y.D. Park, J.R. Childress, and S.J. Pearton, J. Vac. Sci. Technol. A 17, 535 (1999).
http://dx.doi.org/10.1116/1.581615
333.
333. K. B. Jung, a.J. Hong, H. Cho, S. Onishi, D. Johnson, Y.D. Park, J.R. Childress, and S.J. Pearton, J. Electrochem. Soc. 146, 2163 (1999).
http://dx.doi.org/10.1149/1.1391907
334.
334. R. Blumenthal and A.S. Orland, in AVS 49th International Symposium(Denver, CO, 2002), 119 pp.
335.
335. T. Abe, Y.G. Hong, and M. Esashi, J. Vac. Sci. Technol. B 21, 2159 (2003).
http://dx.doi.org/10.1116/1.1612516
336.
336. N. Matsui, K. Mashimo, A. Egami, A. Konishi, O. Okada, and T. Tsukada, Vacuum 66, 479 (2002).
http://dx.doi.org/10.1016/S0042-207X(02)00119-7
337.
337. J. L. Gaddis, The Landscape of History: How Historians Map thePast (Oxford University, NewYork, 2002).
338.
338. Bohr used this quote when asked about the future ofquantum physics, but he may have been quoting someone else. Similar quotes are attributed to SamuelGoldwyn and Yogi Berra. See discussion in http://www.economist.com/blogs/theinbox/2007/07/the_perils_of_prediction_june
339.
339. “Semiconductor Industry Post Near-Record Sales Total in2012,” Semiconductor Industry Association (4 February 2013).
340.
340. International Technical Roadmap for Semiconductors (ITRS).
341.
341. “Front end processes” in International TechnicalRoadmap for Semiconductors (ITRS, 2011).
342.
342. “Emerging research materials” in InternationalTechnical Roadmap for Semiconductors (ITRS, 2011).
343.
343. “Emerging research devices” in InternationalTechnical Roadmap for Semiconductors (ITRS, 2011).
344.
344. “Process integration, devices, and structures” in International Technical Roadmap for Semiconductors (ITRS, 2011).
345.
345. “Interconnect” in International Technical Roadmapfor Semiconductors (ITRS, 2011).
346.
346. “Lithography” in International Technical Roadmapfor Semiconductors (ITRS, 2011).
347.
347. R. A. Cirelli, O. Nalamasu, S. Pau, and G.P. Watson, US patent 6,218,057 (17 Apr. 2001).
348.
348. S. Pau, O. Nalamasu, R. Cirelli, J. Frackoviak, A. Timko, P. Watson, F. Klemens, and G. Timp, J. Vac. Sci. Technol. B 18, 317 (2000).
http://dx.doi.org/10.1116/1.591192
349.
349. Y. Chen, P. Xu, Y. Chen, L. Miao, X. Xu, C. Bencher, and C. Ngai, in International Symposium on LithographyExtensions (Kobe, Japan, 2010).
350.
350. B. Mebarki, in 2010 International Symposium on LithographyExtensions (Kobe, Japan, 2010).
351.
351. C. Bencher, Y. Chen, H. Dai, W. Montgomery, and L. Huli, Proc. SPIE 6924, 69244E (2008).
http://dx.doi.org/10.1117/12.772953
352.
352. D. Medeiros, in 6th International Symposium on ImmersionLithography Extensions (Prague, 2009).
353.
353. E. Kinsbron, W.E. Willenbrock, and H.J. Levinstein, in ECS Fall Meeting Extended Abstracts(Detroit, MI, 1982),Vol. 82-2, 243 pp.
354.
354. E. Kinsbron and W.T. Lynch, US patent 4,432,132 (21February 1984).
355.
355. D. S. Y. Hsu, Appl. Phys. Lett. 59, 2193 (1991).
http://dx.doi.org/10.1063/1.106070
356.
356. W.-Y. Jung et al., Proc. SPIE 6520, 65201C (2007).
http://dx.doi.org/10.1117/12.707275
357.
357. B. Mebarki et al., Proc. SPIE 7973, 79730G (2011).
http://dx.doi.org/10.1117/12.881574
358.
358. C. Bencher et al., Proc. SPIE 7973, 79730K (2011).
http://dx.doi.org/10.1117/12.881679
359.
359. Chris A. Mack, Field Guide to Optical Lithography(SPIE Press, Bellingham, WA, 2006).
360.
360. Chris Mack, Fundamental Principles of OpticalLithography (Wiley, Chichester,England, 2007).
361.
361. G. S. Oehrlein, R.J. Phaneuf, and D.B. Graves, J. Vac. Sci. Technol. B 29, 010801 (2011).
http://dx.doi.org/10.1116/1.3532949
362.
362. S. Xiong, J. Bokor, Q. Xiang, P. Fisher, I. Dudley, and P. Rao, Proc. SPIE 4689, 733 (2002).
http://dx.doi.org/10.1117/12.473517
363.
363. W. H. Yan, W. Moreau, R. Wise, and Y. Chui, in AVS 46th International Symposium(Seattle, WA, 1999).
364.
364. S. Halle, W.H. Yan, W. Moreau, J. Wittmann, and A. Gutmann, in AVS 46th International Symposium(Seattle, WA, 1999).
365.
365. H. L. Maynard and W.W. Tai, “Striation reduction in oxide etching” (unpublished).
366.
366. M. Nault, T. Weidman, D. Sugiarto, D. Mui, C. Lee, and J. Yang, J. Vac. Sci. Technol. B 16, 3730 (1998).
http://dx.doi.org/10.1116/1.590398
367.
367. J. Stowers and D.A. Keszler, Microelectron. Eng. 86, 730 (2009).
http://dx.doi.org/10.1016/j.mee.2008.11.034
368.
368. B. Ozpineci and L. Tolbert, “Silicon carbide: Smaller, faster, tougher” IEEE Spectrum(in press).
369.
369. F. Schwierz, Nature Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
370.
370. T. Seo, T. Yoshino, Y. Cho, N. Hata, and T. Kikkawa, Jpn. J. Appl. Phys. 46, 5742 (2007).
http://dx.doi.org/10.1143/JJAP.46.5742
371.
371. P.-I. Wang, Z. Wu, T.-M. Lun and L.V. Interrante, J. Electrochem. Soc. 153, G267 (2006).
http://dx.doi.org/10.1149/1.2167932
372.
372. A. Itoh, A. Inokuchi, S. Yasuda, A. Teramoto, T. Goto, M. Hirayama, and T. Ohmi, Jpn. J. Appl. Phys. 47, 2515 (2008).
http://dx.doi.org/10.1143/JJAP.47.2515
373.
373. H. J. Cho et al., in Proceedings of the 36th European Solid-State DeviceResearch Conference, edited by M. D. Adrian M. Ionescu, and Yusuf Leblebici(Montreux, Switzerland, 2006), 146 pp.
374.
374. D.-S. Kil et al., in 2004 Symposium on VLSl Technology Digest ofTechnical Papers (2004), pp. 126127.
375.
375. D.-S. Kil et al., in 2006 Symposium on VLSI Technology Digest ofTechnical Papers (Honolulu, HI, 2006), pp. 38–39.
376.
376. C. B. Kaynak, Dr.-Ing Thesis, Technical University ofBerlin, 2013.
377.
377. Micron Technology Phase Change Module Flyer (15 Oct. 2012).
378.
378. I. S. Kim et al., in 2010 Symposium on VLSI Technology(2010), pp. 203204.
379.
379. S.-W. Chung et al., in 2006 Symposium on VLSI Technology Digest ofTechnical Papers (2006), pp. 3233.
380.
380. J. Y. Kim et al., 2003 Symposium on VLSl Technology Digest of TechnicalPapers (2003), pp. 1112.
381.
381. M. A. Siddiqi, Dynamic RAM: Technology Advancements(CRC, Boca Raton, FL, 2012).
382.
382. B. El-Kareh, G.B. Bronner, and S.E. Schuster, Solid State Technol. 40, 89 (1997).
383.
383. M. Koyanagi, in IEEE SSCS News (Winter 2008), pp. 3741.
384.
384. K. W. Lee, T. Nakamura, T. Ono, Y. Yamada, T. Mizukusa, H. Hashimoto, K.T. Park, H. Kurino and M. Koyanagi, in IEDM Technical Digest (San Francisco,CA), pp. 165168.
385.
385. T. Fukushima, Y. Yamada, H. Kikuchi, and M. Koyanagi, in IEDM Technical Digest (Washington DC, 2005), pp. 359362.
386.
386. B. Shieh, K.C. Saraswat, J.P. McVittie, S. List, S. Nag, M. Islamraja, and R.H. Havemann, Electron Devices Lett. 19, 16 (1998).
http://dx.doi.org/10.1109/55.650339
387.
387. L. G. Gosset et al., Microelectron. Eng. 82, 321 (2005).
http://dx.doi.org/10.1016/j.mee.2005.07.014
388.
388. R. J. O. M. Hoofman, G. J. A.M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M.R. Baklanov, Z. Tökei, and G.P. Beyer, Microelectron. Eng. 80, 337 (2005).
http://dx.doi.org/10.1016/j.mee.2005.04.088
389.
389. R. Hoofman, R. Daamen, J. Micheton, and V. Nguyenhoang, Solid State Technol. 49, 55 (2006).
390.
390. R. H. Havemann and Shin-puu Jeng, US patent 5,461,003 (24 Oct. 1995).
391.
391. M. B. Anand, M. Yamada, and H. Shibata, IEEE Trans. Electron Devices 44, 1965 (1997).
http://dx.doi.org/10.1109/16.641367
392.
392. C.-H. Chen, Y.-K. Fang, C.-S. Lin, C.-W. Yang, and J.-C. Hsieh, Solid-State Electron. 45, 199 (2001).
http://dx.doi.org/10.1016/S0038-1101(00)00192-1
393.
393. P. A. Kohl, D.M. Bhusari, M. Wedlake, C. Case, F.P. Klemens, J. Miner, B.-C. Lee, R.J. Gutmann, and R. Shick, IEEE Electron Devices Lett. 21, 557 (2000).
http://dx.doi.org/10.1109/55.887464
394.
394. K. Chan and K.K. Gleason, J. Electrochem Soc. 153, C223 (2006).
http://dx.doi.org/10.1149/1.2168297
395.
395. L. H. Lee and K.K. Gleason, J. Electrochem. Soc. 155, G78 (2008).
http://dx.doi.org/10.1149/1.2837838
396.
396. R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
http://dx.doi.org/10.1007/BF02650179
397.
397. A. Ekert, AIP Conf. Proc. 323, 450 (1994).
http://dx.doi.org/10.1063/1.2946023
398.
398. S. R. Das, IEEE Spectrum 48, 18 (2011).
http://dx.doi.org/10.1109/MSPEC.2011.5719710
399.
399. B. E. Kane, Nature 393, 133 (1998).
http://dx.doi.org/10.1038/30156
400.
400. J. J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim1, J. J.L. Morton, F.A. Zwanenburg, D.N. Jamieson, A.S. Dzurak, and A. Morello, Nature 496, 334 (2013).
http://dx.doi.org/10.1038/nature12011
401.
401. G. D. Sanders, K.W. Kim, and W.C. Holton, Phys. Rev. A 60, 4146 (1999).
http://dx.doi.org/10.1103/PhysRevA.60.4146
402.
402. G. D. Sanders, K.W. Kim, and W.C. Holton, Phys. Rev. B 61, 7526 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.7526
403.
403. M. R. Sakr, H.W. Jiang, E. Yablonovitch, and E.T. Croke, Appl. Phys. Lett. 87, 223104 (2005).
http://dx.doi.org/10.1063/1.2136436
404.
404. D. F. V. James, Appl. Phys. B 66, 181 (1998).
http://dx.doi.org/10.1007/s003400050373
405.
405. S. Pau, C.S. Pai, Y.L. Low, J. Moxom, P. T.A. Reilly, W.B. Whitten, and J.M. Ramsey, Phys. Rev. Lett. 96, 120801 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.120801
406.
406. H. Häffner, C.F. Roosa, and R. Blatt, Phys. Rep. 469, 155 (2008).
http://dx.doi.org/10.1016/j.physrep.2008.09.003
407.
407. L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1209
408.
408. D. J. Wineland and D. Leibfried, Laser Phys. Lett. 8, 175 (2011).
http://dx.doi.org/10.1002/lapl.201010125
409.
409. S. C. Doret et al., New J. Phys. 14, 073012 (2012).
http://dx.doi.org/10.1088/1367-2630/14/7/073012
410.
410. K. Wright et al., New J. Phys. 15, 033004 (2013).
http://dx.doi.org/10.1088/1367-2630/15/3/033004
411.
411. F. Roozboom et al., in Handbook of 3D Integration, Volume 1 - Technology and Applications of 3D IntegratedCircuits, edited by P. Garrou, C. Bower, and P. Ramm (John Wiley, U.S., 2011), Vol. 1 - Technologyand Applications of 3D Integrated Circuits, pp. 66–67.
412.
412. E. Pargon, M. Martin, K. Menguelti, L. Azarnouche, J. Foucher, and O. Joubert, Appl. Phys. Lett. 94, 103111 (2009).
http://dx.doi.org/10.1063/1.3094128
413.
413. L. J. Overzet, J.T. Verdeyen, R.M. Roth, and F.F. Carasco, presented at the Material Research Society Symposium,Pittsburgh, PA, 1987 (unpublished).
414.
414. Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogawa, and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).
http://dx.doi.org/10.1063/1.100445
415.
415. S. Samukawa and S. Furuoya, Appl. Phys. Lett. 63, 2044 (1993).
http://dx.doi.org/10.1063/1.110586
416.
416. K. Hashimoto, Jpn. J. Appl. Phys. 33, 6013 (1994).
http://dx.doi.org/10.1143/JJAP.33.6013
417.
417. S. Samukawa and K. Terada, J. Vac. Sci. Technol. B 12, 3300 (1994).
http://dx.doi.org/10.1116/1.587616
418.
418. H. Sugai, K. Nakamura, Y. Hikosaka, and M. Nakamura, J. Vac. Sci. Technol. A 13, 887 (1995).
http://dx.doi.org/10.1116/1.579847
419.
419. T. Mieno and S. Samukawa, Jpn. J. Appl. Phys. 34, L1079 (1995).
http://dx.doi.org/10.1143/JJAP.34.L1079
420.
420. S. Samukawa and T. Tsukada, Appl. Phys. Lett. 69, 1056 (1996).
http://dx.doi.org/10.1063/1.116929
421.
421. M. A. Lieberman and S. Ashida, Plasma Sources Sci. Technol. 5, 145 (1996).
http://dx.doi.org/10.1088/0963-0252/5/2/006
422.
422. T. H. Ahn, K. Nakamura, and H. Sugai, Plasma Sources Sci. Technol. 5, 139 (1996).
http://dx.doi.org/10.1088/0963-0252/5/2/005
423.
423. G. A. Hebner and C.B. Fleddermann, J. Appl. Phys. 82, 2814 (1997).
http://dx.doi.org/10.1063/1.366277
424.
424. D. P. Lymberopoulos, V.I. Kolobov, and D.J. Economou, J. Vac. Sci. Technol. A. 16, 564 (1998).
http://dx.doi.org/10.1116/1.581072
425.
425. M. V. Malyshev, V.M. Donnelly, J.I. Colonell, and S. Samukawa, J. Appl. Phys. 86, 4813 (1999).
http://dx.doi.org/10.1063/1.371447
426.
426. M. Malyshev and V.M. Donnelly, Plasma Sources Sci. Technol. 9, 353 (2000).
http://dx.doi.org/10.1088/0963-0252/9/3/314
427.
427. S. Samukawa, K. Noguchi, J.I. Colonell, K. H.A. Bogart, M.V. Malyshev, and V.M. Donnelly, J. Vac. Sci. Technol. B. 18, 834 (2000).
http://dx.doi.org/10.1116/1.591283
428.
428. P. Subramonium and M.J. Kushner, Appl. Phys. Lett. 79, 2145 (2001).
http://dx.doi.org/10.1063/1.1406139
429.
429. P. Subramonium and M.J. Kushner, J. Vac. Sci. Technol. A 20, 313 (2002).
http://dx.doi.org/10.1116/1.1434964
430.
430. D. J. Economou, Appl. Surf. Sci. 253, 6672 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.02.004
431.
431. H. Shin, W. Zhu, D.J. Economou, and V.M. Donnelly, J. Vac. Sci. Technol. A 30, 031304 (2012).
http://dx.doi.org/10.1116/1.4705515
432.
432. S. K. Kanakasabapathy, L.J. Overzet, V. Midha, and D.J. Economou, Appl. Phys. Lett. 78, 22 (2001).
http://dx.doi.org/10.1063/1.1338500
433.
433. L. Xu, D.J. Economou, V.M. Donnelly, and P. Ruchhoeft, Appl. Phys. Lett. 87, 041502 (2005).
http://dx.doi.org/10.1063/1.2001129
434.
434. H. Shin, W. Zhu, L. Xu, V.M. Donnelly, and D.J. Economou, Plasma Sources Sci. Technol. 20, 055001 (2011).
http://dx.doi.org/10.1088/0963-0252/20/5/055001
435.
435. S. Banna et al., IEEE Trans. Plasma Sci. 37, 1730 (2009).
http://dx.doi.org/10.1109/TPS.2009.2028071
436.
436. P. Diomede, D.J. Economou, and V.M. Donnelly, J. Appl. Phys. 109, 083302 (2011).
http://dx.doi.org/10.1063/1.3573488
437.
437. L. Chen and Q. Yang, presented at the Electrochemical Society Symposium, LosAngeles, CA, 1996 (unpublished).
438.
438. M. J. Goeckner, T.K. Bennett, and S.A. Cohen, Appl. Phys. Lett. 71, 980 (1997).
http://dx.doi.org/10.1063/1.119706
439.
439. K. P. Giapis, T.A. Moore, and T.K. Minton, J. Vac. Sci. Technol. A 13, 959 (1995).
http://dx.doi.org/10.1116/1.579658
440.
440. S. Samukawa, Jpn. J. Appl. Phys. 45, 2395 (2006).
http://dx.doi.org/10.1143/JJAP.45.2395
441.
441. D. J. Economou, J. Phys. D: Appl. Phys. 41, 024001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/2/024001
442.
442. S. Panda, D.J. Economou, and L. Chen, J. Vac. Sci. Technol. A 19, 398 (2001).
http://dx.doi.org/10.1116/1.1344909
443.
443. A. Ranjan, V.M. Donnelly, and D.J. Economou, J. Vac Sci. Technol. A 24, 1839 (2006).
http://dx.doi.org/10.1116/1.2244537
444.
444. Y. Tamural et al., Presented at the 12th IEEE International Conference onNanotechnology (IEEE-NANO), The International Conference Centre Birmingham, Birmingham, UnitedKingdom, 2012 (unpublished).
445.
445. T. Meguro, M. Hamagaki, S. Modaressi, T. Hara, Y. Aoyagi, M. Ishii, and Y. Yamamoto, Appl. Phys. Lett. 56, 1552 (1990).
http://dx.doi.org/10.1063/1.103171
446.
446. H. Sasaue, S. Iseda, K. Asami, J. Yamamoto, M. Hirose, and Y. Horiike, Jpn. J. Appl. Phys. 29, 2648 (1990).
http://dx.doi.org/10.1143/JJAP.29.2648
447.
447. S. D. Athavale and D.J. Economou, J. Vac. Sci. Technol. B 14, 3702 (1996).
http://dx.doi.org/10.1116/1.588651
448.
448. S. D. Athavale and D.J. Economou, J. Vac. Sci. Technol. A 13, 966 (1995).
http://dx.doi.org/10.1116/1.579659
449.
449. S. D. Park, C.K. Oh, J.W. Bae, G.Y. Yeom, T.W. Kim, J.I. Song, and J.H. Jang, Appl. Phys. Lett. 89, 043109 (2006).
http://dx.doi.org/10.1063/1.2221504
450.
450. V. M. Donnelly and D.J. Economou, “Atomic Layer Etching with Pulsed Plasmas,” ProvisionalPatent Application No. 61/286,572, 15 December 2009.
451.
451. V. M. Donnelly and D.J. Economou, “ Atomic Layer Etching with PulsedPlasmas,” Provisional International Patent Application No. PCT/US/2010/060251, 14December 2010.
452.
452. F. Schwierz, Nature Nanotechnol. 5, 487 (2010).
453.
453. H. Song, M.A. Reed, and T. Lee, Adv. Mater. 23, 1583 (2011).
http://dx.doi.org/10.1002/adma.201004291
454.
454. A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C.M. Breslin, L. Gignac, M.S. Lundstrom, and W. Haensch, Nano Lett. 12, 758 (2012).
http://dx.doi.org/10.1021/nl203701g
455.
455. M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C.L. Hollenberg, G. Klimeck, and M.Y. Simmons, Nature Nanotechnol. 7, 242 (2012).
http://dx.doi.org/10.1038/nnano.2012.21
456.
456. M. V. Malyshev, V.M. Donnelly, A. Kornblit, and N.A. Ciampa, J. Appl. Phys. 84, 137 (1998).
http://dx.doi.org/10.1063/1.368010
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/31/5/10.1116/1.4819316
Loading
/content/avs/journal/jvsta/31/5/10.1116/1.4819316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/31/5/10.1116/1.4819316
2013-09-05
2016-09-25

Abstract

The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of thetechnique of physical sputtering, was introduced to integrated circuit manufacturing as early as themid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal inmanufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly,the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became thebreakthrough that allowed the features in integrated circuits to continue to shrink over the next 40years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactordesign is included. Some basic principles related to plasma etching such as evaporation rates andLangmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon,silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatmentis presented of applications in current silicon integrated circuit fabrication. Finally, somepredictions are offered for future needs and advances in plasma etching for silicon andnonsilicon-based devices.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/31/5/1.4819316.html;jsessionid=aD7LD2VhZs3Pdm8CkbvH_SbC.x-aip-live-02?itemId=/content/avs/journal/jvsta/31/5/10.1116/1.4819316&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/31/5/10.1116/1.4819316&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/31/5/10.1116/1.4819316'
Right1,Right2,Right3,