Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.International Technology Roadmap for Semiconductor: Interconnect (Semiconductor Industry Association, 2011).
2. Z. Li, A. Rahtu, and R. G. Gordon, J. Electrochem. Soc. 153, C787 (2006).
3. L. Wu and E. Eisenbraun, J. Vac. Sci. Technol. B. 25, 2581 (2007).
4. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, Phys. Rev. B. 66, 075414 (2002).
5. S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol. B. 22, 240 (2004).
6. J. G. Lozano, J. Bogan, P. Casey, A. P. McCoy, G. Hughes, and P. D. Nellist, APL Mater. 1, 042105 (2013).
7. K. Ito, K. Kohama, K. Hamasaka, Y. Sonobayashi, N. Sasaki, Y. Shirai, and M. Murakami, Jpn. J. Appl. Phys. 51, 04DB06 (2012).
8. N. Samal, H. Du, R. Luberoff, K. Chetry, R. Bubber, A. Hayes, and A. Devasahayam, J. Vac. Sci. Technol. A. 31, 01A137(2013).
9. H. Wojcik et al., Microelectron. Eng. 110, 29 (2013).
10. G. Rampelberg, K. Devloo-Casier, D. Deduytsche, M. Schaekers, N. Blasco, and C. Detavernier, Appl. Phys. Lett. 102, 111910 (2013).
11. W. A. Lanford, P. J. Ding, W. Wang, S. Hymes, and S. P. Muraka, Thin Solid Films 262, 234 (1995).
12. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, J. Appl. Phys. 75, 3627 (1994).
13. P. J. Ding, W. A. Lanford, S. Hymes, and S. P. Murarka, Appl. Phys. Lett. 64, 2897 (1994).
14. T. S. de Felipe, S. P. Murarka, S. Bedell, and W. A. Lanford, Thin Solid Films 335, 49 (1998).
15. W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann Ltd., Oxford, UK, 2004).
16. K. Maekawa, K. Mori, N. Suzumura, K. Honda, Y. Hirose, K. Asai, A. Uedono, and M. Kojima, Microelectron. Eng. 85, 2137 (2008).
17. M. Tada, M. Abe, N. Furutake, F. Ito, T. Tonegawa, M. Sekine, and Y. Hayashi, IEEE Trans. Electron Devices 54, 1867 (2007).
18. L. S. Darken and R. W. Gurry, Physical Chemistry of Metals (McGraw-Hill, New York, 1953).
19. J. C. Riviere and S. Myhra, Handbook of Surface and Interface Analysis (CRC, New York, 1998).
20. D. C. Perng, J. B. Yeh, K. C. Hsu, and S. W. Tsai, Thin Solid Films 518, 1648 (2010).
21. S. S. Wong et al., Proceedings of 1998 IEEE International Interconnect Technology Conference (IEEE, New York, 1998), pp. 107109.
22. D. Y. Moon, D. S. Han, J. H. Park, S. Y. Shin, J. W. Park, B. M. Kim, and J. Y. Cho, Thin Solid Films. 521, 146 (2012).
23. J. Koike, M. Wada, T. Usui, H. Nasu, S. Takahashi, N. Shimizu, Y. Yoshimaru, and H. Shibata, AIP Conf. Proc. 817, 43 (2006).
24. K. Barmak, A. Gungor, C. Cabral, and J. M. E. Harper, J. Appl. Phys. 94, 1605 (2003).
25. A. Almazouzi, M. P. Macht, V. Naundorf, and G. Neumann, Phys. Status Solidi A 167, 15 (1998).<15::AID-PSSA15>3.0.CO;2-8
26. Y. S. Kim and Y. Shimogaki, J. Vac. Sci. Technol. A. 19, 2642 (2001).
27. S. Gandikota, S. Voss, R. Tao, A. Duboust, D. Cong, L. Chen, S. Ramaswami, and D. Carl, Microelectron. Eng. 50, 547 (2000).
28. O. K. Kwon, S. H. Kwon, H. S. Park, and S. W. Kang, J. Electrochem. Soc. 151, C753 (2004).

Data & Media loading...


Article metrics loading...



The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H plasma, while Al was deposited using trimethylaluminum as the precursor and H plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd