Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/32/3/10.1116/1.4867264
1.
1. X. Zhao, C. M. Wei, L. Yang, and M. Y. Chou, Phy. Rev. Lett. 92, 236805 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.236805
2.
2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
3.
3. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. Y. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
http://dx.doi.org/10.1038/nature06458
4.
4. C. Thelander et al., Mater. Today 9, 28 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71651-0
5.
5. G. Rosaz, B. Salem, N. Pauc, A. Potié, and P. Gentile, Appl. Phys. Lett. 99, 193107 (2011).
http://dx.doi.org/10.1063/1.3660244
6.
6. R. Yan, D. Gargas, and P. Yang, Nat. Photonics 3, 569 (2009).
http://dx.doi.org/10.1038/nphoton.2009.184
7.
7. A. M. Ionescu and H. Riel, Nature 479, 329 (2011).
http://dx.doi.org/10.1038/nature10679
8.
8. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
9.
9. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002).
http://dx.doi.org/10.1038/415617a
10.
10. S. A. Dayeh, J. Wang, N. Li, J. Y. Huang, A. V. Gin, and S. T. Picraux, Nano Lett. 11, 4200 (2011).
http://dx.doi.org/10.1021/nl202126q
11.
11. S. A. Dayeh, R. M. Dickerson, and S. T. Picraux, Appl. Phys. Lett. 99, 113105 (2011).
http://dx.doi.org/10.1063/1.3634050
12.
12. Y. Wu, R. Fan, and P. Yang, Nano Lett. 2, 83 (2002).
http://dx.doi.org/10.1021/nl0156888
13.
13. K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Nano Lett. 12, 3200 (2012).
http://dx.doi.org/10.1021/nl301185x
14.
14. M. Ben-Ishai and F. Patolsky, Nano Lett. 12, 1121 (2012).
http://dx.doi.org/10.1021/nl204263k
15.
15. T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, Nano Lett. 8, 3456 (2008).
http://dx.doi.org/10.1021/nl8023438
16.
16. F. M. Ross, Rep. Prog. Phys. 73, 114501 (2010).
http://dx.doi.org/10.1088/0034-4885/73/11/114501
17.
17. T. E. Clark, P. Nimmatoori, K. Keong Lew, L. Pan, J. M. Redwing, and E. C. Dickey, Nano Lett. 8, 1246 (2008).
http://dx.doi.org/10.1021/nl072849k
18.
18. N. Li, T. Y. Tan, and U. Gosele, Appl. Phys. A. 90, 591 (2008).
http://dx.doi.org/10.1007/s00339-007-4376-z
19.
19. C. Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, and F. M. Ross, Science 326, 1247 (2009).
http://dx.doi.org/10.1126/science.1178606
20.
20. D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, Nano Lett. 11, 3117 (2011).
http://dx.doi.org/10.1021/nl201124y
21.
21. Y. Chou, C. Y. Wen, M. C. Reuter, D. Su, E. A. Stach, and F. M. Ross, ACS Nano 6, 6407 (2012).
http://dx.doi.org/10.1021/nn301978x
22.
22. S. F. Svennson, S. Jeppsen, C. Thelander, L. Samuelson, H. Linke, and K. A. Dick, Nanotechnol. 24, 345601 (2013).
http://dx.doi.org/10.1088/0957-4484/24/34/345601
23.
23. M. Paladugu, J. Zou, Y. Nan Guo, X. Zhang, Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, and C. Jagadish, Appl. Phys. Lett. 93, 101911 (2008).
http://dx.doi.org/10.1063/1.2978959
24.
24. A. Potié, T. Baron, L. Latu-Romain, G. Rosaz, B. Salem, L. Montès, P. Gentile, J. Kreisel, and H. Roussel, J. Appl. Phys. 110, 024311 (2011).
http://dx.doi.org/10.1063/1.3610409
25.
25. F. Oehler, P. Gentile, T. Baron, and P. Ferret, Nanotechnology 20, 475307 (2009).
http://dx.doi.org/10.1088/0957-4484/20/47/475307
26.
26. K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L. R. Wallenberg, and F. M. Ross, Nano Lett. 7, 1817 (2007).
http://dx.doi.org/10.1021/nl0705900
27.
27. C. Y. Wen, J. Tersoff, K. Hillerich, M. C. Reuter, J. H. Park, S. Kodambaka, E. A. Stach, and F. M. Ross, Phys. Rev. Lett. 107, 025503 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.025503
28.
28. G. G. Jernigan, P. E. Thompson, and C. L. Silvestre, Surf. Sci. 380, 417 (1997).
http://dx.doi.org/10.1016/S0039-6028(97)00036-8
29.
29. D. Shakthivel and S. Raghavan, J. Appl. Phys. 112, 024317 (2012).
http://dx.doi.org/10.1063/1.4737597
30.
30. A. Lugstein, M. Steinmair, Y. Hyun, G. Hauer, P. Pongratz, and E. Bertagnolli, Nano Lett. 8, 2310 (2008).
http://dx.doi.org/10.1021/nl8011006
31.
31. K. W. Schwarz and J. Tersoff, Nano Lett. 11, 316 (2011).
http://dx.doi.org/10.1021/nl1027815
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/32/3/10.1116/1.4867264
Loading
/content/avs/journal/jvsta/32/3/10.1116/1.4867264
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/32/3/10.1116/1.4867264
2014-03-03
2016-02-11

Abstract

Axial Si-Si Ge heterostructured nanowires were grown by Au-catalyzed vapor–liquid–solid method. In this work, the authors examine the changes in growth parameters on the interfacial-abruptness of Si-Si Ge heterointerfaces in nanowires. The authors have investigated the effect of temperature drop, pressure change, and growth stop on the droplet stability which in turn modifies nanowire morphology and interfacial abruptness. The authors found that Si/Si Ge heterointerface is relatively sharp while Si Ge /Si is much broader. They demonstrate that a short growth stop is a good way to minimize reservoir effect resulting in small interfacial abruptness value. Our observations reveal that Si/Si Ge interfacial abruptness is 20 ± 5 nm irrespective of the nanowire diameter while interfacial abruptness for Si Ge /Si is linearly dependent on nanowire diameter.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/32/3/1.4867264.html;jsessionid=15ii085bta1cr.x-aip-live-02?itemId=/content/avs/journal/jvsta/32/3/10.1116/1.4867264&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd