Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/32/5/10.1116/1.4887035
1.
1. R. Calder and G. Levin, Brit. J. Appl. Phys. 18, 1459 (1967).
http://dx.doi.org/10.1088/0508-3443/18/10/313
2.
2. G. Chuste, CERN (unpublished).
3.
3. M. Suemitsu, Y. Uneme, and N. Miyamoto, Vacuum 44, 425 (1993).
http://dx.doi.org/10.1016/0042-207X(93)90063-G
4.
4. D. G. Bills, J. Vac. Sci. Technol. 6, 166 (1969).
http://dx.doi.org/10.1116/1.1492650
5.
5. M. Bernardini et al., J. Vac. Sci. Technol. A 16, 188 (1998).
http://dx.doi.org/10.1116/1.580967
6.
6. L. Westerberg, B. Hjörvarsson, E. Wallén, and A. Mathewson, Vacuum 48, 771 (1997).
http://dx.doi.org/10.1016/S0042-207X(97)00042-0
7.
7. J. R. J. Bennett and R. J. Elsey, Vacuum 43, 35 (1992).
http://dx.doi.org/10.1016/0042-207X(92)90180-5
8.
8. Y. Tito Sasaki, J. Vac. Sci. Technol. A 25, 1309 (2007).
http://dx.doi.org/10.1116/1.2734151
9.
9. P. Chiggiato (unpublished).
10.
10. O. B. Malyshev, A. P. Smith, R. Valizadeh, and A. Hannah, J. Vac. Sci. Technol. A 28, 1215 (2010).
http://dx.doi.org/10.1116/1.3478672
11.
11. O. B. Malyshev, A. P. Smith, R. Valizadeh, and A. Hannah, Vacuum 85, 1063 (2011).
http://dx.doi.org/10.1016/j.vacuum.2011.01.028
12.
12. O. B. Malyshev and C. Naran, Vacuum 86, 1363 (2012).
http://dx.doi.org/10.1016/j.vacuum.2012.01.002
13.
13. O. B. Malyshev, R. M. A. Jones, B. T. Hogan, and A. Hannah, J. Vac. Sci. Technol. A 31, 031601 (2013).
http://dx.doi.org/10.1116/1.4798256
14.
14. R. Cimino, V. Baglin, and I. R. Collins. Phys. Rev. ST Accel. Beams 2, 63201 (1999).
http://dx.doi.org/10.1103/PhysRevSTAB.2.063201
15.
15. G. Rumolo, F. Ruggiero, and F. Zimmermann. Phys. Rev. ST Accel. Beams 4, 012801 (2001).
http://dx.doi.org/10.1103/PhysRevSTAB.4.012801
16.
16. M. A. Furman and V. H. Chaplin, Phys. Rev. ST Accel. Beams 9, 034403 (2006).
http://dx.doi.org/10.1103/PhysRevSTAB.9.034403
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/32/5/10.1116/1.4887035
Loading
/content/avs/journal/jvsta/32/5/10.1116/1.4887035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/32/5/10.1116/1.4887035
2014-07-08
2016-09-28

Abstract

The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces only the H ESD yield by a factor 2.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/32/5/1.4887035.html;jsessionid=0pAxEWoHsP-yW2b5sWP0O2g4.x-aip-live-03?itemId=/content/avs/journal/jvsta/32/5/10.1116/1.4887035&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/32/5/10.1116/1.4887035&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/32/5/10.1116/1.4887035'
Right1,Right2,Right3,