1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvsta/33/1/10.1116/1.4892385
1.
1. T. Suntola and J. Antson, U.S. patent no. 4,058,430 (15 November 1977).
2.
2. T. Suntola and J. Hyvarinen, Annu. Rev. Mater. Sci. 15, 177 (1985).
http://dx.doi.org/10.1146/annurev.ms.15.080185.001141
3.
3. S. M. George, A. W. Ott, and J. W. Klaus, J. Phys. Chem. 100, 13121 (1996).
http://dx.doi.org/10.1021/jp9536763
4.
4. S. Haukka and T. Suntola, Interface Sci. 5, 119 (1997).
http://dx.doi.org/10.1023/A:1008601024870
5.
5. M. Leskelä and M. Ritala, Thin Solid Films 409, 138 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00117-7
6.
6. M. Ritala and M. Leskelä, Handbook of Thin Films Materials: Deposition and Processing of Thin Films, edited by H. Nalwa ( Academic, New York, 2002), Vol. 1, pp. 103159.
7.
7. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
8.
8. A. Jones, H. Aspinall, P. Chalker, R. Potter, T. Manning, Y. Loo, R. O'Kane, J. Gaskell, and L. Smith, Chem. Vap. Deposition 12, 83 (2006).
http://dx.doi.org/10.1002/cvde.200500023
9.
9. J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).
http://dx.doi.org/10.1002/adem.200800316
10.
10. J. A. van Delft, D. Garcia-Alonso, and W. M. M. Kessels, Semicond. Sci. Technol. 27, 074002 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074002
11.
11. C. Detavernier, J. Dendooven, S. Pulinthanathu Sree, K. F. Ludwig, and J. A. Martens, Chem. Soc. Rev. 40, 5242 (2011).
http://dx.doi.org/10.1039/c1cs15091j
12.
12. F. Zaera, J. Mater. Chem. 18, 3521 (2008).
http://dx.doi.org/10.1039/b803832e
13.
13. J. R. Bakke, K. L. Pickrahn, T. P. Brennan, and S. F. Bent, Nanoscale 3, 3482 (2011).
http://dx.doi.org/10.1039/c1nr10349k
14.
14. J. W. Elam, N. P. Dasgupta, and F. B. Prinz, MRS Bull. 36, 899 (2011).
http://dx.doi.org/10.1557/mrs.2011.265
15.
15. Q. Peng, J. S. Lewis, P. G. Hoertz, J. T. Glass, and G. N. Parsons, J. Vac. Sci. Technol., A 30, 010803 (2012).
http://dx.doi.org/10.1116/1.3672027
16.
16. H. C. M. Knoops, M. E. Donders, M. C. M. van de Sanden, P. H. L. Notten, and W. M. M. Kessels, J. Vac. Sci. Technol., A 30, 010801 (2012).
http://dx.doi.org/10.1116/1.3660699
17.
17. C. Wiemer, L. Lamagna, and M. Fanciulli, Semicond. Sci. Technol. 27, 074013 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074013
18.
18. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Chem. Mater. 15, 3507 (2003).
http://dx.doi.org/10.1021/cm0303080
19.
19. R. A. Adomaitis, J. Cryst. Growth 312, 1449 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2009.12.041
20.
20. H. C. M. Knoops, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, J. Electrochem. Soc. 157, G241 (2010).
http://dx.doi.org/10.1149/1.3491381
21.
21. M. Rose, Ph.D. thesis ( Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden, 2010).
22.
22. J. Kim, J. Ahn, S. Kang, and J. Kim, J. Appl. Phys. 101, 073502 (2007).
http://dx.doi.org/10.1063/1.2714685
23.
23. A. Lankhorst, B. Paarhuis, H. Terhorst, P. Simons, and C. Kleijn, Surf. Coat. Technol. 201, 8842 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.04.079
24.
24. R. A. Adomaitis, Chem. Vap. Deposition 17, 353 (2011).
http://dx.doi.org/10.1002/cvde.201106922
25.
25. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, Chem. Vap. Deposition 9, 73 (2003).
http://dx.doi.org/10.1002/cvde.200390005
26.
26. J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe, and C. Detavernier, J. Electrochem. Soc. 156, P63 (2009).
http://dx.doi.org/10.1149/1.3072694
27.
27. M. Rose and J. Bartha, Appl. Surf. Sci. 255, 6620 (2009).
http://dx.doi.org/10.1016/j.apsusc.2009.02.055
28.
28. M. Rose, J. Bartha, and I. Endler, Appl. Surf. Sci. 256, 3778 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.01.025
29.
29. R. Puurunen, Chem. Vap. Deposition 9, 249 (2003).
http://dx.doi.org/10.1002/cvde.200306265
30.
30. R. Puurunen, Chem. Vap. Deposition 9, 327 (2003).
http://dx.doi.org/10.1002/cvde.200306266
31.
31. R. Puurunen, Chem. Vap. Deposition 10, 159 (2004).
http://dx.doi.org/10.1002/cvde.200306283
32.
32. R. L. Puurunen et al., J. Appl. Phys. 96, 4878 (2004).
http://dx.doi.org/10.1063/1.1787624
33.
33. R. L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004).
http://dx.doi.org/10.1063/1.1810193
34.
34. A. Yanguas-Gil and J. W. Elam, J. Vac. Sci. Technol., A 30, 01A159 (2012).
http://dx.doi.org/10.1116/1.3670396
35.
35. A. Yanguas-Gil and J. W. Elam, Chem. Vap. Deposition 18, 46 (2012).
http://dx.doi.org/10.1002/cvde.201106938
36.
36. A. Yanguas-Gil and J. W. Elam, ECS Trans. 41, 169 (2011).
http://dx.doi.org/10.1149/1.3633665
37.
37. J. Malzbender, E. Wessel, and R. W. Steinbrech, Solid State Ionics 176, 2201 (2005).
http://dx.doi.org/10.1016/j.ssi.2005.06.014
38.
38. M. Ettler, H. Timmermann, J. Malzbender, A. Weber, and N. Menzler, J. Power Sources 195, 5452 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.03.049
39.
39. N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stöver, J. Mater. Sci. 45, 3109 (2010).
http://dx.doi.org/10.1007/s10853-010-4279-9
40.
40. D. Monnier, I. Nuta, C. Chatillon, M. Gros-Jean, F. Volpi, and E. Blanquet, J. Electrochem. Soc. 156, H71 (2009).
http://dx.doi.org/10.1149/1.3009595
41.
41. P. W. Atkins, Physikalische Chemie ( Wiley-VCH, Weinheim, 2006).
42.
42. W. Weinreich et al., J. Vac. Sci. Technol., A 31, 01A123 (2013).
http://dx.doi.org/10.1116/1.4766281
43.
43. T. Zilbauer, Ph.D. thesis ( Universität der Bundeswehr München, 2009).
44.
44. R. Brodkey and H. Hershey, Transport Phenomena: A Unified Approach ( McGraw-Hill, New York, 1988).
45.
45. W. Schafbauer, N. H. Menzler, and H. P. Buchkremer, Int. J. Appl. Ceram. Technol. 11, 125 (2014).
http://dx.doi.org/10.1111/j.1744-7402.2012.02839.x
46.
46. D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002).
http://dx.doi.org/10.1021/cm020357x
47.
47. G. Prechtl, A. Kersch, G. Schulze Icking-Konert, W. Jacobs, T. Hecht, H. Boubekeur, and U. Schroder, IEEE Int. Electron Devices Meet., Tech. Dig. 2003, 9.6.1.
http://dx.doi.org/10.1109/IEDM.2003.1269265
48.
48. A. Yanguas-Gil and J. W. Elam, J. Vac. Sci. Technol., A 32, 031504 (2014).
http://dx.doi.org/10.1116/1.4867441
49.
49. B. Forreiter, Master's thesis ( Karlsruher Institut für Technologie, Institut für Werkstoffe der Elektrotechnik, 2012).
50.
50. A. Leonide, Y. Apel, and E. Ivers-Tiffee, ECS Trans. 19, 81 (2009).
http://dx.doi.org/10.1149/1.3247567
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/33/1/10.1116/1.4892385
Loading
/content/avs/journal/jvsta/33/1/10.1116/1.4892385
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/33/1/10.1116/1.4892385
2014-08-08
2014-12-21

Abstract

Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO) films using the precursors tetrakis(ethylmethylamido)zirconium and O. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/33/1/1.4892385.html;jsessionid=fflira3cpc5qq.x-aip-live-02?itemId=/content/avs/journal/jvsta/33/1/10.1116/1.4892385&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/33/1/10.1116/1.4892385
10.1116/1.4892385
SEARCH_EXPAND_ITEM