Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/33/1/10.1116/1.4897221
1.
1. D. A. Oulianov, R. A. Crowell, D. J. Gosztola, I. A. Shkrob, O. J. Korovyanko, and R. C. Rey-de-Castro, J. Appl. Phys. 101, 053102 (2007).
http://dx.doi.org/10.1063/1.2696204
2.
2. G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
http://dx.doi.org/10.1109/TED.2002.806473
3.
3. J. Arai, H. Kawai, and F. Okano, Appl. Opt. 45, 9066 (2006).
http://dx.doi.org/10.1364/AO.45.009066
4.
4. S. R. Cho, J. Kim, K. S. Oh, S. K. Yang, J. M. Baek, D. H. Jang, T. I. Kim, and H. Jeon, IEEE Photonics Technol. Lett. 14, 378 (2002).
http://dx.doi.org/10.1109/68.986819
5.
5. S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bachtold, and M. R. Taghizadeh, IEEE Photonics Technol. Lett. 12, 459 (2000).
http://dx.doi.org/10.1109/68.841252
6.
6. L. Erdmann and K. J. Gabriel, Appl. Opt. 40, 5592 (2001).
http://dx.doi.org/10.1364/AO.40.005592
7.
7. M. Khizar, Z. Y. Fan, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 173504 (2005).
http://dx.doi.org/10.1063/1.1914960
8.
8. E. H. Park, M. J. Kim, and Y. S. Kwon, IEEE Photonics Technol. Lett. 11, 439 (1999).
http://dx.doi.org/10.1109/68.752541
9.
9. C. P. B. Siu, H. Zeng, and M. Chiao, Opt. Express 15, 11154 (2007).
http://dx.doi.org/10.1364/OE.15.011154
10.
10. C. H. Tien, C. H. Hung, and T. H. Yu, J. Disp. Technol. 5, 147 (2009).
http://dx.doi.org/10.1109/JDT.2009.2013874
11.
11. J. P. Yang, Q. Y. Bao, Z. Q. Xu, Y. Q. Li, J. X. Tang, and S. Shen, Appl. Phys. Lett. 97, 223303 (2010).
http://dx.doi.org/10.1063/1.3521413
12.
12. J. Y. Lee et al., Nature 460, 498 (2009).
http://dx.doi.org/10.1038/nature08173
13.
13. F. T. O'Neill and J. T. Sheridan, Optik 113, 391 (2002).
http://dx.doi.org/10.1078/0030-4026-00186
14.
14. K. W. Kok, W. J. Yoo, K. Sooriakumar, J. S. Pan, and E. Y. Lee, J. Vac. Sci. Technol., B 20, 1878 (2002).
http://dx.doi.org/10.1116/1.1501583
15.
15. N. Roxhed, P. Griss, and G. Stemme, J. Micromech. Microeng. 17, 1087 (2007).
http://dx.doi.org/10.1088/0960-1317/17/5/031
16.
16. J. Nakamura, K. Higuchi, and K. Maenaka, Microsyst. Technol. 19, 433 (2013).
http://dx.doi.org/10.1007/s00542-012-1662-2
17.
17. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, and K. B. Crozier, Nano Lett. 11, 1851 (2011).
http://dx.doi.org/10.1021/nl200201b
18.
18. A. Zhang, S. F. You, C. Soci, Y. S. Liu, D. L. Wang, and Y. H. Lo, Appl. Phys. Lett. 93, 121110 (2008).
http://dx.doi.org/10.1063/1.2990639
19.
19. B. B. Burton, M. P. Boleslawski, A. T. Desombre, and S. M. George, Chem. Mater. 20, 7031 (2008).
http://dx.doi.org/10.1021/cm801738z
20.
20. Y. P. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, Nano Lett. 11, 2527 (2011).
http://dx.doi.org/10.1021/nl201179n
21.
21. H. Park and K. B. Crozier, Sci. Rep. 3, 2460 (2013).
http://dx.doi.org/10.1038/srep02460
22.
22. H. Park, K. Seo, and K. B. Crozier, Appl. Phys. Lett. 101, 193107 (2012).
http://dx.doi.org/10.1063/1.4766944
23.
23. H. Park, Y. P. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, Nano Lett. 14, 1804 (2014).
http://dx.doi.org/10.1021/nl404379w
24.
24. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems ( Academic, New York, 1996), pp. 147223.
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/33/1/10.1116/1.4897221
Loading
/content/avs/journal/jvsta/33/1/10.1116/1.4897221
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/33/1/10.1116/1.4897221
2014-10-02
2016-09-24

Abstract

The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/33/1/1.4897221.html;jsessionid=PJzZJ1-8qQNj8F0OzM916SFS.x-aip-live-02?itemId=/content/avs/journal/jvsta/33/1/10.1116/1.4897221&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/33/1/10.1116/1.4897221&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/33/1/10.1116/1.4897221'
Right1,Right2,Right3,