Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. J. Trujillo, Q. Wu, and K. K. Gleason, Adv. Funct. Mater. 20, 607 (2010).
2. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003).
3. A. Zenasni, V. Jousseaume, P. Holliger, L. Favennec, O. Gourhant, P. Maury, and G. Gerbaud, J. Appl. Phys. 102, 094107 (2007).
4. H. L. Shi, J. Bao, R. S. Smith, H. Huang, J. Liu, P. S. Ho, M. L. Mcswiney, M. Moinpour, and G. M. Kloster, Appl. Phys. Lett. 93, 192909 (2008).
5. J. Lam, Y. M. Huang, H. Tan, Z. Q. Mo, and Z. H. Mai, J. Vac. Sci. Technol., A 29, 051513 (2011).
6. J. Lam, H. Tan, Y. M. Huang, F. Zhang, and Z. H. Mai, Jpn. J. Appl. Phys. 51, 111501 (2012).
7. J. Lam, Y. M. Huang, T. H. Ng, M. K. B. Dawood, F. Zhang, and Z. H. Mai, Appl. Phys. Lett. 102, 022908 (2013).
8. A. Boltasseva and H. A. Atwater, Science 331, 290 (2011).
9. W. L. Barnes, A. Dereus, and T. W. Ebbesen, Nature 424, 824 (2003).
10. J. Grand, C. M. Lamy, J. L. Bijeon, P. M. Adam, A. Vial, and P. Royer, Phys. Rev. B 72, 033407 (2005).
11. A. G. Brolo, E. Arctander, and C. J. Addison, J. Phys. Chem. B 109, 401 (2005).
12. Y. P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, J. Phys. Chem. B 110, 3153 (2006).
13. N. C. Linn, C. H. Sun, A. Arya, P. Jiang, and B. Jiang, Nanotechnology 20, 225303 (2009).
14. W. Wu, M. Hu, F. S. Ou, Z. Li, and R. S. Williams, Nanotechnology 21, 255502 (2010).
15. Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
16. C. Y. Chan, J. B. Xu, M. Y. Waye, and H. C. Ong, Appl. Phys. Lett. 96, 033104 (2010).
17. Y. F. Lu, Z. H. Mai, Y. W. Zheng, and W. D. Song, Appl. Phys. Lett. 76, 1200 (2000).

Data & Media loading...


Article metrics loading...



This letter reports the enhancement of Raman signals from low-k dielectric materials in the Cu/low-k interconnects of nanoscale integrated circuit (IC) devices. The Cu nanostructure pattern of the IC device acted as an active substrate for light scattering by the surface plasmon effect, enhancing the Raman signals observed from the low-k dielectric material of the device. The enhancement of the Raman signal of the low-k material was found to be strongly dependent on the incident angle of the incident laser light. A maximally enhanced Raman intensity was achieved when this angle was approximately 45° relative to the surface normal. Our findings are significant to the characterization of low-k materials and the monitoring of low-k reliability in leading edge semiconductor technologies with nanometer-scale structures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd