Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/33/2/10.1116/1.4913379
1.
1. S. Borkar, IEEE Micro 25, 10 (2005).
http://dx.doi.org/10.1109/MM.2005.110
2.
2. K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Masheshwari, and S. Mudanai, IEEE Trans. Electron Devices 58, 2197 (2011).
http://dx.doi.org/10.1109/TED.2011.2121913
3.
3. K. Eriguchi and K. Ono, J. Phys. D 41, 024002 (2008).
http://dx.doi.org/10.1088/0022-3727/41/2/024002
4.
4. T. Ivanov et al., Jpn. J. Appl. Phys. 53, 04EC20 (2014).
http://dx.doi.org/10.7567/JJAP.53.04EC20
5.
5. A. Agarwal and M. J. Kushner, J. Vac. Sci. Technol. A 27, 37 (2009).
http://dx.doi.org/10.1116/1.3021361
6.
6. K. J. Kanarik, S. Tan, J. Holland, A. V. V. Eppler, J. Marks, and R. A. Gottscho, Solid State Technol. 56, 14 (2013).
8.
8. P. Kirsch, SEMI Technology Symposium at SEMICON, Japan, Tokoy, Japan, 2013.
9.
9. R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005).
http://dx.doi.org/10.1063/1.1940727
10.
10. S. M. George, Chem. Rev. 110, 111 (2010).
http://dx.doi.org/10.1021/cr900056b
11.
11. G. N. Parsons et al., J. Vac. Sci. Technol. A 31, 050818 (2013).
http://dx.doi.org/10.1116/1.4816548
12.
12. V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A 31, 050825 (2013).
http://dx.doi.org/10.1116/1.4819316
13.
13. K. Nojiri, Dry Etching Technology for Semiconductors ( Springer International Publishing, New York, 2015).
14.
14. R. A. Gottscho, C. W. Jurgensen, and D. J. Vitkavage, J. Vac. Sci. Technol. B 10, 2133 (1992).
http://dx.doi.org/10.1116/1.586180
15.
15. J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1979).
http://dx.doi.org/10.1063/1.326355
16.
16. C. G. N. Lee, K. J. Kanarik, and R. A. Gottscho, J. Phys. D 47, 273001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/27/273001
17.
17. M. A. Lieberman, 10th Asia-Pacific Conference on Plasma Science and Technology, Jeju Islnad, Korea, 2010.
18.
18. M. E. Barone and D. B. Graves, Plasma Sources Sci. Technol. 5, 187 (1996).
http://dx.doi.org/10.1088/0963-0252/5/2/011
19.
19. M. Wang and M. J. Kushner, J. Vac. Sci. Technol. A 29, 051306 (2011).
http://dx.doi.org/10.1116/1.3626533
20.
20. P. Brichon, E. Despiau-Pujo, and O. Joubert, J. Vac. Sci. Technol. A 32, 021301 (2014).
http://dx.doi.org/10.1116/1.4827016
21.
21. M. A. Lieberman, AVS 60th International Symposium and Exhibition, Long Beach, CA, 2013.
22.
22. R. A. Gottscho and K. J. Kanarik, APS 64th Annual GEC, Salt Lake City, UT, 2011.
23.
23. S. Hwang and E. Tonnis, Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, New York, 2014.
24.
24. G. Cunge, B. J. O. Pelissier, R. Ramos, and C. Maurice, Plasma Sources Sci. Technol. 14, 599 (2005).
http://dx.doi.org/10.1088/0963-0252/14/3/025
25.
25. R. A. Gottscho, 34th International Symposium on Dry Process (DPS), Tokyo, Japan, 2012.
26.
26. A. D. Bailey and R. A. Gottscho, Jpn. J. Appl. Phys. 34, 2083 (1995).
http://dx.doi.org/10.1143/JJAP.34.2083
27.
27. P. D. Agnello, IBM J. Res. Dev. 46, 317 (2002).
http://dx.doi.org/10.1147/rd.462.0317
28.
28. J. K. Kim, S. I. Cho, S. H. Lee, C. K. Kim, K. S. Min, and G. Y. Yeom, J. Vac. Sci. Technol. A 31, 061302 (2013).
http://dx.doi.org/10.1116/1.4816321
29.
29. H. Lee, K. Shin, N. Cho, G. Min, C. Kang, W. Han, and J. Moon, Thin Film Solids 517, 3844 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.01.143
30.
30. C. Petit-Etienne, M. Darnon, L. Vallier, E. Pargon, G. Cunge, F. Boulard, O. Joubert, S. Banna, and T. Lill, J. Vac. Sci. Technol. B 28, 926 (2010).
http://dx.doi.org/10.1116/1.3483165
31.
31. M. N. Yoder, U.S. patent 4,756,794 (12 July 1988).
32.
32. P. A. Maki and D. J. Ehrlich, Appl. Phys. Lett. 55, 91 (1989).
http://dx.doi.org/10.1063/1.102097
33.
33. Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, A. Nagata, H. Shindo, S. Miyazaki, and M. Hirose, J. Vac. Sci. Technol. A 8, 1844 (1990).
http://dx.doi.org/10.1116/1.576814
34.
34. F. Djamdji and R. Blunt, Mater. Sci. Eng. B 20, 77 (1993).
http://dx.doi.org/10.1016/0921-5107(93)90401-8
35.
35. K. S. Min et al., IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, 2009.
36.
36. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. A 13, 966 (1995).
http://dx.doi.org/10.1116/1.579659
37.
37.Workshop on Atomic-Layer-Etch and Clean Technology, SEMATECH,” April 2014, http://www.sematech.org/meetings/archives/fep/10605/index.htm, accessed 7 December 2014.
38.
38. T. Meguro, M. Hamagaki, S. Modaressi, T. Hara, Y. Aoyagi, M. Ishii, and Y. Yamamoto, Appl. Phys. Lett. 56, 1552 (1990).
http://dx.doi.org/10.1063/1.103171
39.
39. T. Matsuura, J. Murota, Y. Sawada, and T. Ohmi, Appl. Phys. Lett. 63, 2803 (1993).
http://dx.doi.org/10.1063/1.110340
40.
40. Y. Aoyagi, K. Shinmura, K. Kawasaki, T. Tanaka, K. Gamo, S. Namba, and I. Nakamoto, Appl. Phys. Lett. 60, 968 (1992).
http://dx.doi.org/10.1063/1.106477
41.
41. D. Jariwala, A. Srivastava, and P. M. Ajayan, J. Nanosci. Nanotechnol. 11, 6621 (2011).
http://dx.doi.org/10.1166/jnn.2011.5001
42.
42. N. Posseme, O. Pollet, and S. S. Barnola, Appl. Phys. Lett. 105, 051605 (2014).
http://dx.doi.org/10.1063/1.4892543
43.
43. W. T. Tsang, T. H. Chiu, and R. M. Kapre, Appl. Phys. Lett. 63, 3500 (1993).
http://dx.doi.org/10.1063/1.110132
44.
44. N. Draeger, H. te Nijenhuis, H. Meinhold, B. van Schravendijk, and L. Nittala. U.S. patent 8,058,179 (15 November 2011).
45.
45. O. Joubert, E. Despiau-Pujo, G. Cunge, L. Vallier, P. Brichon, R. Blanc, S. Banna, R. Achutharaman, and Y. Zhang, Workshop on Atomic-Layer-Etch and Clean Technology, San Francisco, CA, 2014.
46.
46. D. Hausmann, 226th Meeting of the Electrochemical Society (ECS), Cancun, 2014.
47.
47. T. Meguro, M. Ishii, H. H. M. Kodama, T. Hara, Y. Yamamoto, and Y. Aoyagi, Jpn. J. Appl. Phys. 29, 2216 (1990).
http://dx.doi.org/10.1143/JJAP.29.2216
48.
48. S.-D. Park, K.-S. Min, B.-Y. Yoon, D.-. H. Lee, and G.-Y. Yeom, Jpn. J. Appl. Phys. 44, 389 (2005).
http://dx.doi.org/10.1143/JJAP.44.389
49.
49. S. D. Athavale and D. J. Economou, J. Vac. Sci. Technol. B 14, 3702 (1996).
http://dx.doi.org/10.1116/1.588651
50.
50. T.-W. Kim et al., IEEE Trans. Electron Devices 55, 1577 (2008).
http://dx.doi.org/10.1109/TED.2008.923522
51.
51. S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom, Electrochem. Solid-State Lett. 11, H71 (2008).
http://dx.doi.org/10.1149/1.2832427
52.
52. J. B. Park, W. S. Lim, S. D. Park, B. J. Park, and G. Y. Yeom, J. Korean Phys. Soc. 54, 976 (2009).
http://dx.doi.org/10.3938/jkps.54.976
53.
53. K. S. Min et al., Microelectron. Eng. 114, 121 (2014).
http://dx.doi.org/10.1016/j.mee.2013.10.003
54.
54. K. S. Min, S. H. Kang, J. K. Kim, Y. I. Jhon, M. S. Jhon, and G. Y. Yeom, Microelectron. Eng. 110, 457 (2013).
http://dx.doi.org/10.1016/j.mee.2013.03.170
55.
55. R. A. Gottscho, K. J. Kanarik, and S. Sriraman, AVS 60th International Symposium & Exhibition, Long Beach, CA, 2013.
56.
56. K. K. Ko and S. W. Pang, J. Vac. Sci. Technol. B 11, 2275 (1993).
http://dx.doi.org/10.1116/1.586889
57.
57. D. Buttari, S. Heikman, S. Keller, and U. K. Mishra, Proceedings of the IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, 2002.
58.
58. A. Alian, C. Merckling, G. Brammertz, M. Meuris, M. Heyns, and K. De Meyer, ECS J. Solid State Sci. Technol. 1, P310 (2012).
http://dx.doi.org/10.1149/2.001301jss
59.
59. K. Ikeda, S. Imai, and M. Matsumura, Appl. Surf. Sci. 112, 87 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00995-6
60.
60. E. Hudson, V. Vidyarthi, R. Bhowmick, R. Bise, H. J. Shin, G. Delgadino, B. Jariwala, D. Lambert, and S. Deshmukh, AVS 61st International Symposium and Exhibition, Baltimore, MD, 2014.
61.
61. T. Lill et al., 226th Meeting of the Electrochemical Society (ECS), Cancun, Mexico, 2014.
62.
62. T. Sugiyama, T. Matsuura, and J. Murota, Appl. Surf. Sci. 112, 187 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)01026-4
63.
63. G. Y. Yeom, Atomic Layer Etch and Atomic Layer Clean Conference, San Francisco, CA, 2014.
64.
64. M. Ishii, T. Meguro, H. Kodama, Y. Yamamoto, and Y. Aoyagi, Jpn. J. Appl. Phys. 31, 2212 (1992).
http://dx.doi.org/10.1143/JJAP.31.2212
65.
65. T. Meguro, M. Ishii, K. Kodama, Y. Yamamoto, K. Gamo, and Y. Aoyagi, Thin Solid Films 225, 136 (1993).
http://dx.doi.org/10.1016/0040-6090(93)90142-C
66.
66. M. Ishii, T. Meguro, K. Gamo, T. Sugano, and Y. Aoyagi, Jpn. J. Appl. Phys. 32, 6178 (1993).
http://dx.doi.org/10.1143/JJAP.32.6178
67.
67. T. Meguro, M. Ishii, T. Sugano, K. Gamo, and Y. Aoyagi, Appl. Surf. Sci. 82–83, 193 (1994).
http://dx.doi.org/10.1016/0169-4332(94)90216-X
68.
68. S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim, J. I. Song, and J. H. Jang, Appl. Phys. Lett. 89, 043109 (2006).
http://dx.doi.org/10.1063/1.2221504
69.
69. W. S. Lim, G. Y. Yeom, S. D. Park, Y. Y. Kim, and B. J. Park, 9th IEEE Conference on Nanotechnology (NANO), Genoa, Italy, 2009.
70.
70. Y. L. Li et al., Phys. Rev. Lett. 74, 2603 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2603
71.
71. C. K. Oh, S. D. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom, Electrochem. Solid-State Lett. 10, H94 (2007).
http://dx.doi.org/10.1149/1.2426414
72.
72. L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 22, 88 (2004).
http://dx.doi.org/10.1116/1.1627771
73.
73. S. Sakurai and T. Nakayama, J. Cryst. Growth 237–239, 212 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01904-2
74.
74. J. P. Chang, J. C. Arnold, G. C. H. Zau, H.-S. Shin, and H. H. Sawin, J. Vac. Sci. Technol. A 15, 1853 (1997).
http://dx.doi.org/10.1116/1.580652
75.
75. S. Imai, T. Haga, O. Matsuzaki, T. Hattori, and M. Matsumura, Jpn. J. Appl. Phys. 34, 5049 (1995).
http://dx.doi.org/10.1143/JJAP.34.5049
76.
76. T. Lill, S. Tan, W. Yang, K. J. Kanarik, X. Hua, M. Shen, V. Vahedi, J. Marks, and R. A. Gottscho, 36th International Symposium on Dry Process (DPS), Yokohama, Japan, 2014.
77.
77. H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011).
http://dx.doi.org/10.1116/1.3609974
78.
78. F. Gou, E. Neyts, M. Eckert, S. Tinck, and A. Bogaerts, J. Appl. Phys. 107, 113305 (2010).
http://dx.doi.org/10.1063/1.3361038
79.
79. H. D. Hagstrum, Phys. Rev. 96, 325 (1954).
http://dx.doi.org/10.1103/PhysRev.96.325
80.
80. C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989).
http://dx.doi.org/10.1063/1.102336
81.
81. P. Sigmund, Phys. Rev. 184, 383 (1969).
http://dx.doi.org/10.1103/PhysRev.184.383
82.
82. H. Feil, J. Dieleman, and B. J. Garrison, J. Appl. Phys. 74, 1303 (1993).
http://dx.doi.org/10.1063/1.354909
83.
83. S. D. Park, D. H. Lee, and G. Y. Yeom, Electrochem. Solid-State Lett. 8, C106 (2005).
http://dx.doi.org/10.1149/1.1938848
84.
84. D. Humbird and D. B. Graves, J. Appl. Phys. 96, 791 (2004).
http://dx.doi.org/10.1063/1.1753657
85.
85. D. E. Hanson, A. F. Voter, and J. D. Kress, J. Appl. Phys. 82, 3552 (1997).
http://dx.doi.org/10.1063/1.365674
86.
86. H. Sakaue, S. Iseda, K. Asami, J. Yamamoto, M. Hirose, and Y. Horike, Jpn. J. Appl. Phys. 29, 2648 (1990).
http://dx.doi.org/10.1143/JJAP.29.2648
87.
87. T. Matsuura, Y. Honda, and J. Murota, Appl. Phys. Lett. 74, 3573 (1999).
http://dx.doi.org/10.1063/1.124165
88.
88. B. J. Kim, S. H. Chung, and S. M. Cho, Proceedings of the International Symposium on Thin Film Materials, Processes, and Reliability (Electrochemical Society, San Francisco, CA, 2001), Vol. 2001-24.
89.
89. E. Vogli, D. Metzler, and G. S. Oehrlein, Appl. Phys. Lett. 102, 253105 (2013).
http://dx.doi.org/10.1063/1.4812750
90.
90. D. Metzler, R. L. Bruce, S. Engelmann, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci. Technol. A 32, 020603 (2014).
http://dx.doi.org/10.1116/1.4843575
91.
91. S. D. Park, C. K. Oh, D. H. Lee, and G. Y. Yeom, Electrochem. Solid-State Lett. 8, C177 (2005).
http://dx.doi.org/10.1149/1.2073667
92.
92. Y. Y. Kim, W. S. Lim, J. B. Park, and G. Y. Yeom, J. Electrochem. Soc. 158, D710 (2011).
http://dx.doi.org/10.1149/2.061112jes
93.
93. W. S. Lim et al., Carbon 50, 429 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.08.058
94.
94. S. D. Park, D. H. Lee, and G. Y. Yeom, J. Korean Phys. Soc. 47, 469 (2005).
95.
95. Y. I. Jhon, K. S. Min, G. Y. Yeom, and Y. M. Jhon, Appl. Phys. Lett. 105, 093104 (2014).
http://dx.doi.org/10.1063/1.4894523
96.
96. T.-W. Kim, J.-I. Song, J. H. Jang, D.-H. Kim, S. D. Park, J. W. Bae, and G. Y. Yeom, Appl. Phys. Lett. 91, 102110 (2007).
http://dx.doi.org/10.1063/1.2780113
97.
97. O. L. Bourne, D. Hart, D. M. Rayner, and P. A. Hackett, J. Vac. Sci. Technol. B 11, 556 (1993).
http://dx.doi.org/10.1116/1.586800
98.
98. B. Y. Han, C. Y. Cha, and J. H. Weaver, J. Vac. Sci. Technol. A 16, 490 (1998).
http://dx.doi.org/10.1116/1.581048
99.
99. A. Agarwal and M. J. Kushner, TECHCON, Austin, TX, 2007.
100.
100. H. Shin, W. Zhu, V. M. Donnelly, and D. J. Economou, J. Vac. Sci. Technol. A 30, 021306 (2012).
http://dx.doi.org/10.1116/1.3681285
101.
101. A. Fridman and L. A. Kennedy, Plasma Physics and Engineering ( Taylor & Francis, New York, 2004).
102.
102. S. Rauf, T. Sparks, P. L. G. Ventzek, V. V. Smirnov, A. V. Stengach, K. G. Gaynullin, and V. A. Pavlovsky, J. Appl. Phys. 101, 033308 (2007).
http://dx.doi.org/10.1063/1.2464192
103.
103. P. Moroz, AVS 61st International Symposium & Exhibition, Baltimore, MD, 2014.
104.
104. P. Moroz and D. Moroz, 67th Annual Gaseous Electronics Conference (GEC), Raleigh, NC, 2014.
105.
105. C. M. Aldao and J. H. Weaver, Prog. Surf. Sci. 68, 189 (2001).
http://dx.doi.org/10.1016/S0079-6816(01)00047-8
106.
106. J. B. Park, W. S. Lim, B. J. Park, I. H. Park, Y. W. Kim, and G. Y. Yeom, J. Phys. D 42, 055202 (2009).
http://dx.doi.org/10.1088/0022-3727/42/5/055202
108.
108. F. Laermer and A. Schilp, U.S. patent 5,501,893 (26 March 1996).
109.
109. S.-J. Jeng, W. C. Natzle, and C. Yu, U.S. patent 5282925 (1 February 1994).
110.
110. H. Nishino, N. Hayasaka, and H. Okano, J. Appl. Phys. 74, 1345 (1993).
http://dx.doi.org/10.1063/1.354890
111.
111. P. Ye, 39th International Symposium on Compound Semiconductor, 29–31 April 2008.
112.
112. S. Takatani and T. Kikawa, Appl. Phys. Lett. 65, 2585 (1994).
http://dx.doi.org/10.1063/1.112603
113.
113. W. T. Tsang, T. H. Chiu, and R. M. Kapre, J. Cryst. Growth 135, 377 (1994).
http://dx.doi.org/10.1016/0022-0248(94)90126-0
114.
114. G. C. DeSalvo et al., J. Electrochem. Soc. 143, 3652 (1996).
http://dx.doi.org/10.1149/1.1837266
115.
115. C. A. Bozada et al., U.S. patent 6,004,881 (21 December 1999).
116.
116. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoglu, Appl. Phys. Lett. 87, 021108 (2005).
http://dx.doi.org/10.1063/1.1992656
117.
117. R. Turkot, Workshop on Atomic-Layer-Etch and Clean Technology, San Francisco, CA, 2014.
118.
118. Y. Kuo and S. Lee, Jpn. J. Appl. Phys. 39, L188 (2000).
http://dx.doi.org/10.1143/JJAP.39.L188
119.
119. P. A. Tamirisa, G. Levitin, N. S. Kulkarni, and D. W. Hess, Microelectron. Eng. 84, 105 (2007).
http://dx.doi.org/10.1016/j.mee.2006.08.012
120.
120. F. Wu, G. Levitin, and D. W. Hess, J. Electrochem. Soc. 157, H474 (2010).
http://dx.doi.org/10.1149/1.3314292
121.
121. D. W. Hess, Workshop on Atomic-Layer-Etch and Clean Technology, San Francisco, CA, 2014.
122.
122. M. LaPedus, Semiconductor Engineering Magazine, 2014.
123.
123. A. Dimiev, D. Kosynkin, A. Sinitskii, A. Slesarev, Z. Sun, and J. M. Tour, Science 331, 1168 (2011).
http://dx.doi.org/10.1126/science.1199183
124.
124. J. L. Stickney, Q. Lei, and C. K. Rhee, U.S. patent 5,385,651 (31 January 1995).
125.
125. A. Chitnis, U.S. patent 20090050903 A1 (26 February 2009).
126.
126. D. J. Economou, J. Phys. D 47, 303001 (2014).
http://dx.doi.org/10.1088/0022-3727/47/30/303001
127.
127. M. Schaepkens, G. S. Oehrlein, and J. M. Cook, J. Vac. Sci. Technol. B 18, 856 (2000).
http://dx.doi.org/10.1116/1.591286
128.
128. S. Samukawa and K. Terada, J. Vac. Sci. Technol. B 12, 3300 (1994).
http://dx.doi.org/10.1116/1.587616
129.
129. H. Ohtake, S. Samukawa, K. Noguchi, H. Iida, A. Seto, and X. Y. Qian, 4th International Symposium on Plasma Process-Induced Damage, Monterey, CA, 1999.
130.
130. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, K. Tokashiki, J.-Y. Lee, and K. Collins, J. Appl. Phys. 106, 103305 (2009).
http://dx.doi.org/10.1063/1.3262616
131.
131. K. J. Kanarik, G. Kamarthy, and R. A. Gottscho, Solid State Technol. 55, 15 (2012).
132.
132. V. M. Donnelly and D. J. Economou, U.S. patent 0,139,748 (16 June 2011).
133.
133. R. A. Gottscho, D. Cooperberg, and V. Vahedi, Workshop on Frontiers in Low Temperature Plasma Diagnostics III (LTPD), Saillon, Switzerland, 1999.
134.
134. H. F. Winters, J. W. Coburn, and E. Kay, J. Appl. Phys. 48, 4973 (1977).
http://dx.doi.org/10.1063/1.323628
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/33/2/10.1116/1.4913379
Loading
/content/avs/journal/jvsta/33/2/10.1116/1.4913379
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/33/2/10.1116/1.4913379
2015-03-05
2016-12-05

Abstract

Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/33/2/1.4913379.html;jsessionid=UDt-vzoT8v-IdMS2uF3jW_aU.x-aip-live-03?itemId=/content/avs/journal/jvsta/33/2/10.1116/1.4913379&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/33/2/10.1116/1.4913379&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/33/2/10.1116/1.4913379'
Right1,Right2,Right3,