Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, Science 328, 999 (2010).
2. A. L. Walter et al., Phys. Rev. B 84, 085410 (2011).
3. S. Watcharinyanon, C. Virojanadara, and L. I. Johansson, Surf. Sci. 605, 1918 (2011).
4. C. Virojanadara, S. Watcharinyanon, A. A. Zakharov, and L. I. Johansson, Phys. Rev. B 82, 205402 (2010).
5. C. Virojanadara, A. A. Zakharov, S. Watcharinyanon, R. Yakimova, and L. I. Johansson, New J. Phys. 12, 125015 (2010).
6. S. Watcharinyanon, L. I. Johansson, A. A. Zakharov, and C. Virojanadara, Surf. Sci. 606, 401 (2012).
7. S. Watcharinyanon, L. I. Johansson, C. Xia, and C. Virojanadara, J. Appl. Phys. 111, 083711 (2012).
8. A. Sandin, T. Jayasekera, J. E. Rowe, K. W. Kim, M. B. Nardelli, and D. B. Dougherty, Phys. Rev. B 85, 125410 (2012).
9. C. Xia, S. Watcharinyanon, A. A. Zakharov, L. I. Johansson, R. Yakimova, and C. Virojanadara, Surf. Sci. 613, 88 (2013).
10. D. A. Siegel, C. G. Hwang, A. V. Fedorov, and A. Lanzara, Phys. Rev. B 81, 241417 (2010).
11. L. I. Johansson, C. Xia, and C. Virojanadara, Graphene 2, 1 (2013).
12. P. N. First, W. A. de Heer, T. Seyller, C. Berger, J. A. Stroscio, and J. S. Moon, MRS Bull. 35, 296 (2010).
13. M. Ruan, Y. Hu, Z. Guo, R. Dong, J. Palmer, J. Hankins, C. Berger, and W. A. de Heer, MRS Bull. 37, 1138 (2012).
14. T. Ohta, A. Bostwick, J. L. McChesney, T. Seyller, K. Horn, and E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007).
15. J. Hass et al., Phys. Rev. Lett. 100, 125504 (2008).
16. M. Sprinkle et al., Phys. Rev. Lett. 103, 226803 (2009).
17. L. I. Johansson, S. Watcharinyanon, A. A. Zakharov, T. Iakimov, R. Yakimova, and C. Virojanadara, Phys. Rev. B 84, 125405 (2011).
18. L. I. Johansson, C. Xia, J. Ul Hassan, T. Iakimov, A. A. Zakharov, S. Watcharinyanon, R. Yakimova, E. Janzén, and C. Virojanadara, Crystals 3, 1 (2013).
19. L. I. Johansson, R. Armiento, J. Avila, C. Xia, S. Lorcy, I. A. Abrikosov, M. C. Asensio, and C. Virojanadara, Sci. Rep. 4, 4157 (2014).
20.See Fig. 1 in Ref. 18, showing low energy electron microscopy (LEEM) images and electron reflectivity curves extracted from different locations of one of the samples used in the present investigation, that reveal fairly large domains of graphene of one to five layers.
21. K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77, 155303 (2008).
22. C. Virojanadara and L. I. Johansson, Surf. Sci. 505, 358 (2002).
23. B. E. Sernelius, Phys. Rev. B 91, 045402 (2015).
24. V. Despoja and M. Šunjić, Phys. Rev. B 88, 245416 (2013).
25. S. Doniach and M. Šunjić, J. Phys. C 3, 285 (1970).
26. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
27. M. Mucha-Kruczyński, O. Tsyplyatyev, A. Grishin, E. McCann, V. I. Fal'ko, A. Bostwick, and E. Rotenberg, Phys. Rev. B 77, 195403 (2008).
28. I. Gierz, J. Henk, H. Höchst, C. R. Ast, and K. Kern, Phys. Rev. B 83, 121408 (2011).

Data & Media loading...


Article metrics loading...



Studies of the effects induced in the electronic structure after Li deposition, and subsequent heating, on graphene samples prepared on C-face SiC are reported. The as prepared graphene samples are essentially undoped, but after Li deposition, the Dirac point shifts down to 1.2 eV below the Fermi level due to electron doping. The shape of the C 1s level also indicates a doping concentration of around 1014 cm−2 after Li deposition, when compared with recent calculated results of core level spectra of graphene. The C 1s, Si 2p, and Li 1s core level results show little intercalation directly after deposition but that most of the Li has intercalated after heating at 280 °C. Heating at higher temperatures leads to desorption of Li from the sample, and at 1030 °C, Li can no longer be detected on the sample. The single π-band observable from multilayer C-face graphene samples in conventional angle resolved photoelectron spectroscopy is reasonably sharp both on the initially prepared sample and after Li deposition. After heating at 280 °C, the π-band appears more diffuse and possibly split. The Dirac point becomes located at 0.4 eV below the Fermi level, which indicates occurrence of a significant reduction in the electron doping concentration. Constant energy photoelectron distribution patterns extracted from the as prepared graphene C-face sample and also after Li deposition and heating at 280 °C look very similar to earlier calculated distribution patterns for monolayer graphene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd