Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/34/1/10.1116/1.4938104
1.
1. R. F. Service, Science 301, 909 (2003).
http://dx.doi.org/10.1126/science.301.5635.909
2.
2. B. S. Shim, W. Chen, C. Doty, C. Xu, and N. A. Kotov, Nano Lett. 8, 4151 (2008).
http://dx.doi.org/10.1021/nl801495p
3.
3. K. Cherenack, C. Zysset, T. Kinkeldei, N. Muenzenrieder, and G. Troester, Adv. Mater. 22, 5178 (2010).
http://dx.doi.org/10.1002/adma.201002159
4.
4. K. Cherenack and L. van Pieterson, J. Appl. Phys. 112, 091301 (2012).
http://dx.doi.org/10.1063/1.4742728
5.
5. I. S. Bayer and A. Biswas, Vac. Technol. Coat. 14, 14 (2013).
6.
6. M. Stoppa and A. Chiolerio, Sensors 14, 11957 (2014).
http://dx.doi.org/10.3390/s140711957
7.
7. E. R. Post, M. Orth, P. R. Russo, and N. Gershenfeld, IBM Syst. J. 39, 840 (2000).
http://dx.doi.org/10.1147/sj.393.0840
8.
8. D.-H. Kim, Y.-S. Kim, J. Wu, Z. Liu, J. Song, H.-S. Kim, Y. Y. Huang, K.-C. Hwang, and J. A. Rogers, Adv. Mater. 21, 3703 (2009).
http://dx.doi.org/10.1002/adma.200900405
9.
9. G. S. Ryu, S. H. Jeong, B. C. Park, B. Park, and C. K. Song, Org. Electron. 15, 1672 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.03.019
10.
10. H. F. Castro, E. Sowade, J. G. Rocha, P. Alpuim, A. V. Machado, R. R. Baumann, and S. Lanceros-Méndez, Org. Electron. 22, 12 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.03.028
11.
11. R. Bhattacharya, M. M. de Kok, and J. Zhou, Appl. Phys. Lett. 95, 223305 (2009).
http://dx.doi.org/10.1063/1.3269907
12.
12. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, X. Yu, and D. Zou, Adv. Mater. 24, 5713 (2012).
http://dx.doi.org/10.1002/adma.201202930
13.
13. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotechnol. 6, 296 (2011).
http://dx.doi.org/10.1038/nnano.2011.36
14.
14. X. Cai, M. Peng, X. Yu, Y. Fu, and D. Zou, J. Mater. Chem. C 2, 1184 (2014).
http://dx.doi.org/10.1039/C3TC31706D
15.
15. M. Hamedi, R. Forchheimer, and O. Inganäs, Nat. Mater. 6, 357 (2007).
http://dx.doi.org/10.1038/nmat1884
16.
16. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao, Adv. Mater. 26, 5310 (2014).
http://dx.doi.org/10.1002/adma.201400633
17.
17. R. He, T. D. Day, M. Krishnamurthi, J. R. Sparks, P. J. A. Sazio, V. Gopalan, and J. V. Badding, Adv. Mater. 25, 1461 (2013).
http://dx.doi.org/10.1002/adma.201203879
18.
18. D. Graham-Rowe, Nat. Photonics 1, 6 (2007).
http://dx.doi.org/10.1038/nphoton.2006.35
19.
19. A. Laforgue, J. Mater. Chem. 20, 8233 (2010).
http://dx.doi.org/10.1039/c0jm02307h
20.
20. L. Liu, Y. Yu, C. Yan, K. Li, and Z. Zheng, Nat. Commun. 6, 7260 (2015).
http://dx.doi.org/10.1038/ncomms8260
21.
21. D. Zou, D. Wang, Z. Chu, Z. Lv, and X. Fan, Coord. Chem. Rev. 254, 1169 (2010).
http://dx.doi.org/10.1016/j.ccr.2010.02.012
22.
22. M. Toivola, M. Ferenets, P. Lund, and A. Harlin, Thin Solid Films 517, 2799 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.057
23.
23. J. Lee et al., Adv. Mater. 27, 2433 (2015).
http://dx.doi.org/10.1002/adma.201500009
24.
24. Y. Huang, et al., ACS Nano 9, 4766 (2015).
http://dx.doi.org/10.1021/acsnano.5b00860
25.
25. B. Yang, C. Zhao, M. Xiao, F. Wang, C. Li, J. Wang, and J. C. Yu, Small 9, 1003 (2013).
http://dx.doi.org/10.1002/smll.201202023
26.
26. L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili, Cellulose 21, 3813 (2014).
http://dx.doi.org/10.1007/s10570-014-0385-1
27.
27. J. Kiwi and C. Pulgarin, Catal. Today 151, 2 (2010).
http://dx.doi.org/10.1016/j.cattod.2010.01.032
28.
28. J.-W. Lee, T. Mayer-Gall, K. Opwis, C. E. Song, J. S. Gutmann, and B. List, Science 341, 1225 (2013).
http://dx.doi.org/10.1126/science.1242196
29.
29. G. Goncalves, P. A. A. P. Marques, R. J. B. Pinto, T. Trindade, and C. P. Neto, Compos. Sci. Technol. 69, 1051 (2009).
http://dx.doi.org/10.1016/j.compscitech.2009.01.020
30.
30. J. Molina, F. Fernandes, J. Fernández, M. Pastor, A. Correia, A. P. Souto, J. O. Carneiro, V. Teixeira, and F. Cases, Mater. Sci. Eng. B 199, 62 (2015).
http://dx.doi.org/10.1016/j.mseb.2015.04.013
31.
31. R. Dastjerdi and M. Montazer, Colloids Surf. B Biointerfaces 79, 5 (2010).
http://dx.doi.org/10.1016/j.colsurfb.2010.03.029
32.
32. S. D. McCullen, D. R. Stevens, W. A. Roberts, L. I. Clarke, S. H. Bernacki, R. E. Gorga, and E. G. Loboa, Int. J. Nanomed. 2, 253 (2007).
33.
33. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng. 11, 101 (2005).
http://dx.doi.org/10.1089/ten.2005.11.101
34.
34. Y.-P. Jiao and F.-Z. Cui, Biomed. Mater. 2, R24 (2007).
http://dx.doi.org/10.1088/1748-6041/2/4/R02
35.
35. J. S. Jur, J. C. Spagnola, K. Lee, B. Gong, Q. Peng, and G. N. Parsons, Langmuir 26, 8239 (2010).
http://dx.doi.org/10.1021/la904604z
36.
36. S.-W. Choi, J. Y. Park, and S. S. Kim, Nanotechnology 20, 465603 (2009).
http://dx.doi.org/10.1088/0957-4484/20/46/465603
37.
37. N. A. Burns, P. Williams, A. H. Brozena, D. Sen, S. Atanasov, G. N. Parsons, and S. A. Khan, Adv. Mater. Interfaces 2, 1500229 (2015).
38.
38. Z. Gui, H. Zhu, E. Gillette, X. Han, G. W. Rubloff, L. Hu, and S. B. Lee, ACS Nano 7, 6037 (2013).
http://dx.doi.org/10.1021/nn401818t
39.
39. X. Chen, H. Zhu, Y.-C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, ACS Nano 6, 7948 (2012).
http://dx.doi.org/10.1021/nn302417x
40.
40. F. Kayaci, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar, ACS Appl. Mater. Interfaces 4, 6185 (2012).
http://dx.doi.org/10.1021/am3017976
41.
41. G. N. Parsons et al., Coord. Chem. Rev. 257, 3323 (2013).
http://dx.doi.org/10.1016/j.ccr.2013.07.001
42.
42. C. A. Wilson, R. K. Grubbs, and S. M. George, Chem. Mater. 17, 5625 (2005).
http://dx.doi.org/10.1021/cm050704d
43.
43. M. Kemell, V. Pore, M. Ritala, M. Leskelä, and M. Lindén, J. Am. Chem. Soc. 127, 14178 (2005).
http://dx.doi.org/10.1021/ja0532887
44.
44. W.-S. Kim, B.-S. Lee, D.-H. Kim, H.-C. Kim, W.-R. Yu, and S.-H. Hong, Nanotechnology 21, 245605 (2010).
http://dx.doi.org/10.1088/0957-4484/21/24/245605
45.
45. J. Musschoot, J. Dendooven, D. Deduytsche, J. Haemers, G. Buyle, and C. Detavernier, Surf. Coat. Technol. 206, 4511 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.02.038
46.
46. A. K. Roy et al., Anal. Bioanal. Chem. 396, 1913 (2010).
http://dx.doi.org/10.1007/s00216-010-3470-9
47.
47. L. Seung-Mo, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C. V. Chandran, T. Brauniger, G. Hause, and M. Knez, Science 324, 488 (2009).
http://dx.doi.org/10.1126/science.1168162
48.
48. R. Nayak, R. Padhye, I. L. Kyratzis, Y. B. Truong, and L. Arnold, Text. Res. J. 82, 129 (2012).
http://dx.doi.org/10.1177/0040517511424524
49.
49. L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof, Macromolecules 33, 2989 (2000).
http://dx.doi.org/10.1021/ma991858f
50.
50. N. Fedorova and B. Pourdeyhimi, J. Appl. Polym. Sci. 104, 3434 (2007).
http://dx.doi.org/10.1002/app.25939
51.
51. J. H. Wendorff, S. Agarwal, and A. Greiner, Electrospinning: Materials, Processing, and Applications ( Wiley, Weinheim, Germany, 2012).
52.
52. C. Burger, B. S. Hsiao, and B. Chu, Annu. Rev. Mater. Res. 36, 333 (2006).
http://dx.doi.org/10.1146/annurev.matsci.36.011205.123537
53.
53. P. Bajaj, J. Appl. Polym. Sci. 83, 631 (2002).
http://dx.doi.org/10.1002/app.2262
54.
54. S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. P. Souto, and M. F. Esteves, Text. Res. J. 80, 1290 (2010).
http://dx.doi.org/10.1177/0040517509357652
55.
55. B. Mahltig, H. Haufe, and H. Böttcher, J. Mater. Chem. 15, 4385 (2005).
http://dx.doi.org/10.1039/b505177k
56.
56. C. Drew, X. Liu, D. Ziegler, X. Wang, F. F. Bruno, J. Whitten, L. A. Samuelson, and J. Kumar, Nano Lett. 3, 143 (2003).
http://dx.doi.org/10.1021/nl025850m
57.
57. J. Liu, Q. Wang, and X. R. Fan, J. Sol-Gel Sci. Technol. 62, 338 (2012).
http://dx.doi.org/10.1007/s10971-012-2730-x
58.
58. L. Hu, M. Pasta, F. La Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, Nano Lett. 10, 708 (2010).
http://dx.doi.org/10.1021/nl903949m
59.
59. Y. Sun and G. Sun, J. Appl. Polym. Sci. 84, 1592 (2002).
http://dx.doi.org/10.1002/app.10456
60.
60. K. C. Krogman, N. S. Zacharia, S. Schroeder, and P. T. Hammond, Langmuir 23, 3137 (2007).
http://dx.doi.org/10.1021/la063085b
61.
61. K. C. Krogman, J. L. Lowery, N. S. Zacharia, G. C. Rutledge, and P. T. Hammond, Nat. Mater. 8, 512 (2009).
http://dx.doi.org/10.1038/nmat2430
62.
62. S. S. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, J. M. Mabry, G. H. McKinley, and R. E. Cohen, Langmuir 25, 13625 (2009).
http://dx.doi.org/10.1021/la901997s
63.
63. W. Choi, A. Tuteja, S. Chhatre, J. M. Mabry, R. E. Cohen, and G. H. McKinley, Adv. Mater. 21, 2190 (2009).
http://dx.doi.org/10.1002/adma.200802502
64.
64. T. Wakida, S. Tokino, Shouhua Niu , H. Kawamura, Y. Sato, M. Lee, H. Uchiyama, and H. Inagaki, Text. Res. J. 63, 433 (1993).
http://dx.doi.org/10.1177/004051759306300801
65.
65. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, Surf. Coat. Technol. 202, 3427 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2007.12.027
66.
66. H. U. Poll, U. Schladitz, and S. Schreiter, Surf. Coat. Technol. 142, 489 (2001).
http://dx.doi.org/10.1016/S0257-8972(01)01055-6
67.
67. M. Lee, M. S. Lee, T. Wakida, T. Tokuyama, G. Inoue, S. Ishida, T. Itazu, and Y. Miyaji, J. Appl. Polym. Sci. 100, 1344 (2006).
http://dx.doi.org/10.1002/app.23382
68.
68. M. Ma, Y. Mao, M. Gupta, K. K. Gleason, and G. C. Rutledge, Macromolecules 38, 9742 (2005).
http://dx.doi.org/10.1021/ma0511189
69.
69. H. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, and L. Klimek, Surf. Coat. Technol. 200, 1036 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.01.092
70.
70. J. Scholz, G. Nocke, F. Hollstein, and A. Weissbach, Surf. Coat. Technol. 192, 252 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.05.036
71.
71. R. P. Seiber and H. L. Needles, J. Appl. Polym. Sci. 19, 2187 (1975).
http://dx.doi.org/10.1002/app.1975.070190812
72.
72. A. A. Armstrong and H. A. Rutherford, Text. Res. J. 33, 264 (1963).
http://dx.doi.org/10.1177/004051756303300403
73.
73. W. E. Tenhaeff and K. K. Gleason, Adv. Funct. Mater. 18, 979 (2008).
http://dx.doi.org/10.1002/adfm.200701479
74.
74. S. M. George, Chem. Rev. 110, 111 (2010).
http://dx.doi.org/10.1021/cr900056b
75.
75. M. Knez, K. Nielsch, and L. Niinistö, Adv. Mater. 19, 3425 (2007).
http://dx.doi.org/10.1002/adma.200700079
76.
76. G. N. Parsons, S. M. George, and M. Knez, MRS Bull. 36, 865 (2011).
http://dx.doi.org/10.1557/mrs.2011.238
77.
77. M. Ritala, M. Kemell, M. Lautala, A. Niskanen, M. Leskelä, and S. Lindfors, Chem. Vap. Deposition 12, 655 (2006).
http://dx.doi.org/10.1002/cvde.200604228
78.
78. G. N. Parsons, Atomic Layer Deposition of Nanostructured Materials, edited by N. Pinna and M. Knez ( Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011), pp. 271300.
79.
79. J. S. Jur, W. J. Sweet, C. J. Oldham, and G. N. Parsons, Adv. Funct. Mater. 21, 1993 (2011).
http://dx.doi.org/10.1002/adfm.201001756
80.
80. C. A. Hanson, C. J. Oldham, and G. N. Parsons, J. Vac. Sci. Technol. Vac. Surf. Films 30, 01A117 (2012).
http://dx.doi.org/10.1116/1.3656251
81.
81. K. Lahtinen, P. Johansson, T. Kääriäinen, and D. C. Cameron, Polym. Eng. Sci. 52, 1985 (2012).
http://dx.doi.org/10.1002/pen.23148
82.
82. X. Chen, H. Zhu, C. Liu, Y.-C. Chen, N. Weadock, G. Rubloff, and L. Hu, J. Mater. Chem. A 1, 8201 (2013).
http://dx.doi.org/10.1039/c3ta10972k
83.
83. J. C. Spagnola, B. Gong, S. A. Arvidson, J. S. Jur, S. A. Khan, and G. N. Parsons, J. Mater. Chem. 20, 4213 (2010).
http://dx.doi.org/10.1039/c0jm00355g
84.
84. W. J. Sweet, J. S. Jur, and G. N. Parsons, J. Appl. Phys. 113, 194303 (2013).
http://dx.doi.org/10.1063/1.4804960
85.
85. B. Gong, J. C. Spagnola, S. A. Arvidson, S. A. Khan, and G. N. Parsons, Polymer 53, 4631 (2012).
http://dx.doi.org/10.1016/j.polymer.2012.08.018
86.
86. F. Bosco, R. A. Carletto, J. Alongi, L. Marmo, A. Di Blasio, and G. Malucelli, Carbohydr. Polym. 94, 372 (2013).
http://dx.doi.org/10.1016/j.carbpol.2012.12.075
87.
87. J. W. Cho and D. R. Paul, Polymer 42, 1083 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00380-3
88.
88. M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, Carbon 43, 1499 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.01.031
89.
89. J. M. G. Cowie, Eur. Polym. J. 9, 1041 (1973).
http://dx.doi.org/10.1016/0014-3057(73)90081-5
90.
90. J. Rasburn, P. J. Hine, I. M. Ward, R. H. Olley, D. C. Bassett, and M. A. Kabeel, J. Mater. Sci. 30, 615 (1995).
http://dx.doi.org/10.1007/BF00356319
91.
91. M. Gilbert and F. J. Hybart, Polymer 13, 327 (1972).
http://dx.doi.org/10.1016/0032-3861(72)90099-7
92.
92. P. J. Hine, A. Astruc, and I. M. Ward, J. Appl. Polym. Sci. 93, 796 (2004).
http://dx.doi.org/10.1002/app.20517
93.
93. G. O. Shonaike, Eur. Polym. J. 28, 777 (1992).
http://dx.doi.org/10.1016/0014-3057(92)90082-D
94.
94. X.-G. Li and M.-R. Huang, J. Appl. Polym. Sci. 71, 565 (1999).
http://dx.doi.org/10.1002/(SICI)1097-4628(19990124)71:4<565::AID-APP7>3.0.CO;2-P
95.
95. B. J. Holland and J. N. Hay, Polymer 42, 6775 (2001).
http://dx.doi.org/10.1016/S0032-3861(01)00166-5
96.
96. I. Sakurada, Polyvinyl Alcohol Fibers ( Marcel Dekker, Inc., New York, 1985).
97.
97. J. N. Hay, J. Polym. Sci. 6, 2127 (1968).
http://dx.doi.org/10.1002/pol.1968.150060810
98.
98. W. H. Howard, J. Appl. Polym. Sci. 5, 303 (1961).
http://dx.doi.org/10.1002/app.1961.070051509
99.
99. L. He, Q. Xu, C. Hua, and R. Song, Polym. Compos. 31, 921 (2009).
100.
100. R. Gregorio, Jr and E. M. Ueno, J. Mater. Sci. 34, 4489 (1999).
http://dx.doi.org/10.1023/A:1004689205706
101.
101. B. Kalanyan, C. J. Oldham, W. J. Sweet, and G. N. Parsons, ACS Appl. Mater. Interfaces 5, 5253 (2013).
http://dx.doi.org/10.1021/am401095r
102.
102. A. Niskanen, K. Arstila, M. Ritala, and M. Leskelä, J. Electrochem. Soc. 152, F90 (2005).
http://dx.doi.org/10.1149/1.1931471
103.
103. A. Niskanen, K. Arstila, M. Leskelä, and M. Ritala, Chem. Vap. Deposition 13, 152 (2007).
http://dx.doi.org/10.1002/cvde.200606546
104.
104. A. J. M. Mackus, D. Garcia-Alonso, H. C. M. Knoops, A. A. Bol, and W. M. M. Kessels, Chem. Mater. 25, 1769 (2013).
http://dx.doi.org/10.1021/cm400274n
105.
105. G. K. Hyde et al., Langmuir 26, 2550 (2010).
http://dx.doi.org/10.1021/la902830d
106.
106. W. J. Sweet, C. J. Oldham, and G. N. Parsons, ACS Appl. Mater. Interfaces 6, 9280 (2014).
http://dx.doi.org/10.1021/am501582p
107.
107. Q. Peng, X.-Y. Sun, J. C. Spagnola, G. K. Hyde, R. J. Spontak, and G. N. Parsons, Nano Lett. 7, 719 (2007).
http://dx.doi.org/10.1021/nl062948i
108.
108. G. K. Hyde, K. J. Park, S. M. Stewart, J. P. Hinestroza, and G. N. Parsons, Langmuir 23, 9844 (2007).
http://dx.doi.org/10.1021/la701449t
109.
109. C. D. McClure, C. J. Oldham, H. J. Walls, and G. N. Parsons, J. Vac. Sci. Technol. Vac. Surf. Films 31, 061506 (2013).
http://dx.doi.org/10.1116/1.4817718
110.
110. B. Gong and G. N. Parsons, J. Mater. Chem. 22, 15672 (2012).
http://dx.doi.org/10.1039/c2jm32343e
111.
111. C. K. Devine, C. J. Oldham, J. S. Jur, B. Gong, and G. N. Parsons, Langmuir 27, 14497 (2011).
http://dx.doi.org/10.1021/la202677u
112.
112. J. W. Elam, D. Routkevitch, P. P. Mardilovich, and S. M. George, Chem. Mater. 15, 3507 (2003).
http://dx.doi.org/10.1021/cm0303080
113.
113. S. O. Kucheyev, J. Biener, T. F. Baumann, Y. M. Wang, A. V. Hamza, Z. Li, D. K. Lee, and R. G. Gordon, Langmuir 24, 943 (2008).
http://dx.doi.org/10.1021/la7018617
114.
114. N. P. Kobayashi, C. L. Donley, S.-Y. Wang, and R. S. Williams, J. Cryst. Growth 299, 218 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.224
115.
115. M. Ghanashyam Krishna, M. Vinjanampati, and D. Dhar Purkayastha, Eur. Phys. J. Appl. Phys. 62, 30001 (2013).
http://dx.doi.org/10.1051/epjap/2013130048
116.
116. C. J. Oldham, B. Gong, J. C. Spagnola, J. S. Jur, K. J. Senecal, T. A. Godfrey, and G. N. Parsons, J. Electrochem. Soc. 158, D549 (2011).
http://dx.doi.org/10.1149/1.3609046
117.
117. K. Lee, J. S. Jur, D. H. Kim, and G. N. Parsons, J. Vac. Sci. Technol. A 30, 01A163 (2012).
http://dx.doi.org/10.1116/1.3671942
118.
118. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 0546 (1944).
http://dx.doi.org/10.1039/tf9444000546
119.
119. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).
http://dx.doi.org/10.1021/ie50320a024
120.
120. G. K. Hyde, S. D. McCullen, S. Jeon, S. M. Stewart, H. Jeon, E. G. Loboa, and G. N. Parsons, Biomed. Mater. 4, 025001 (2009).
http://dx.doi.org/10.1088/1748-6041/4/2/025001
121.
121.Wearable Electronics and Photonics, edited by X. M. Tao ( CRC, Boca Raton, FL, 2000).
122.
122. J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner, D. H. Reneker, F. W. Harris, and S. Z. D. Cheng, J. Am. Chem. Soc. 126, 15754 (2004).
http://dx.doi.org/10.1021/ja048648p
123.
123. C. Xiang, W. Lu, Y. Zhu, Z. Sun, Z. Yan, C.-C. Hwang, and J. M. Tour, ACS Appl. Mater. Interfaces 4, 131 (2012).
http://dx.doi.org/10.1021/am201153b
124.
124. W. J. Sweet, C. J. Oldham, and G. N. Parsons, J. Vac. Sci. Technol. Vac. Surf. Films 33, 01A117 (2015).
http://dx.doi.org/10.1116/1.4900718
125.
125. W. J. Sweet and G. N. Parsons, Langmuir 31, 7274 (2015).
http://dx.doi.org/10.1021/acs.langmuir.5b00665
126.
126. J. Z. Mundy, A. Shafiefarhood, F. Li, S. A. Khan, and G. N. Parsons, J. Vac. Sci. Technol. A 34, 01A152 (2015).
http://dx.doi.org/10.1116/1.4935448
127.
127. B. Gong, Q. Peng, J. S. Jur, C. K. Devine, K. Lee, and G. N. Parsons, Chem. Mater. 23, 3476 (2011).
http://dx.doi.org/10.1021/cm200694w
128.
128. K. E. Gregorczyk, D. F. Pickup, M. G. Sanz, I. A. Irakulis, C. Rogero, and M. Knez, Chem. Mater. 27, 181 (2015).
http://dx.doi.org/10.1021/cm503724c
129.
129. H. I. Akyildiz, R. P. Padbury, G. N. Parsons, and J. S. Jur, Langmuir 28, 15697 (2012).
http://dx.doi.org/10.1021/la302991c
130.
130. H. I. Akyildiz, M. B. M. Mousa, and J. S. Jur, J. Appl. Phys. 117, 045301 (2015).
http://dx.doi.org/10.1063/1.4906406
131.
131. D. S. Finch, T. Oreskovic, K. Ramadurai, C. F. Herrmann, S. M. George, and R. L. Mahajan, J. Biomed. Mater. Res. A 87, 100 (2008).
http://dx.doi.org/10.1002/jbm.a.31732
132.
132. M. Putkonen, T. Sajavaara, P. Rahkila, L. Xu, S. Cheng, L. Niinistö, and H. J. Whitlow, Thin Solid Films 517, 5819 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.013
133.
133. A. J. Taylor, C. D. McClure, K. A. Shipkowski, E. A. Thompson, S. Hussain, S. Garantziotis, G. N. Parsons, and J. C. Bonner, PLoS One 9, e106870 (2014).
http://dx.doi.org/10.1371/journal.pone.0106870
134.
134. S. E. Atanasov et al., J. Mater. Chem. A 2, 17371 (2014).
http://dx.doi.org/10.1039/C4TA03662J
135.
135. M. D. Groner, S. M. George, R. S. McLean, and P. F. Carcia, Appl. Phys. Lett. 88, 051907 (2006).
http://dx.doi.org/10.1063/1.2168489
136.
136. S. M. George, B. Yoon, and A. A. Dameron, Acc. Chem. Res. 42, 498 (2009).
http://dx.doi.org/10.1021/ar800105q
137.
137. P. Sundberg and M. Karppinen, Beilstein J. Nanotechnol. 5, 1104 (2014).
http://dx.doi.org/10.3762/bjnano.5.123
138.
138. M. Vaha-Nissi, P. Sundberg, E. Kauppi, T. Hirvikorpi, J. Sievanen, A. Sood, M. Karppinen, and A. Harlin, Thin Solid Films 520, 6780 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.07.025
139.
139. S.-H. Jen, B. H. Lee, S. M. George, R. S. McLean, and P. F. Carcia, Appl. Phys. Lett. 101, 234103 (2012).
http://dx.doi.org/10.1063/1.4766731
140.
140. Z. Ma, M. Kotaki, T. Yong, W. He, and S. Ramakrishna, Biomaterials 26, 2527 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2004.07.026
141.
141. B.-Y. Lee, K. Behler, M. E. Kurtoglu, M. A. Wynosky-Dolfi, R. F. Rest, and Y. Gogotsi, J. Nanopart. Res. 12, 2511 (2010).
http://dx.doi.org/10.1007/s11051-009-9820-x
142.
142. Q. Peng, B. Gong, and G. N. Parsons, Nanotechnology 22, 155601 (2011).
http://dx.doi.org/10.1088/0957-4484/22/15/155601
143.
143. J. Huang, I. Ichinose, and T. Kunitake, Angew. Chem. Int. Ed. 45, 2883 (2006).
http://dx.doi.org/10.1002/anie.200503867
144.
144. B. Gong, Q. Peng, J.-S. Na, and G. N. Parsons, Appl. Catal. Gen. 407, 211 (2011).
http://dx.doi.org/10.1016/j.apcata.2011.08.041
145.
145. F. Kayaci, S. Vempati, C. Ozgit-Akgun, N. Biyikli, and T. Uyar, Appl. Catal. B-Environ. 156, 173 (2014).
http://dx.doi.org/10.1016/j.apcatb.2014.03.004
146.
146. J. Zhao et al., Adv. Mater. Interfaces 1, 1400040 (2014).
http://dx.doi.org/10.1002/admi.201400040
147.
147. J. Zhao et al., J. Mater. Chem. A 3, 1458 (2015).
http://dx.doi.org/10.1039/C4TA05501B
148.
148. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, Chem. Mater. 15, 1924 (2003).
http://dx.doi.org/10.1021/cm021333t
149.
149. T. Aaltonen, M. Ritala, Y.-L. Tung, Y. Chi, K. Arstila, K. Meinander, and M. Leskelä, J. Mater. Res. 19, 3353 (2004).
http://dx.doi.org/10.1557/JMR.2004.0426
150.
150. S. Cho, D.-H. Kim, B.-S. Lee, J. Jung, W.-R. Yu, S.-H. Hong, and S. Lee, Sens. Actuators B Chem. 162, 300 (2012).
http://dx.doi.org/10.1016/j.snb.2011.12.081
151.
151. P. Heikkilä, T. Hirvikorpi, H. Hilden, J. Sievänen, L. Hyvärinen, A. Harlin, and M. Vähä-Nissi, J. Mater. Sci. 47, 3607 (2012).
http://dx.doi.org/10.1007/s10853-011-6207-z
152.
152. M. Mousa and G. N. Parsons, ACS Appl. Mater. Interfaces 7, 19523 (2015).
http://dx.doi.org/10.1021/acsami.5b05262
153.
153. X. Meng, X.-Q. Yang, and X. Sun, Adv. Mater. 24, 3589 (2012).
http://dx.doi.org/10.1002/adma.201200397
154.
154. K. H. Seng, J. Liu, Z. P. Guo, Z. X. Chen, D. Jia, and H. K. Liu, Electrochem. Commun. 13, 383 (2011).
http://dx.doi.org/10.1016/j.elecom.2010.12.002
155.
155. X. Han, Y. Liu, Z. Jia, Y.-C. Chen, J. Wan, N. Weadock, K. J. Gaskell, T. Li, and L. Hu, Nano Lett. 14, 139 (2014).
http://dx.doi.org/10.1021/nl4035626
156.
156. X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi, and G. Rubloff, Chem. Mater. 24, 1255 (2012).
http://dx.doi.org/10.1021/cm202901z
157.
157. J. S. Daubert, N. P. Lewis, H. N. Gotsch, J. Z. Mundy, D. N. Monroe, E. C. Dickey, M. Losego, and G. N. Parsons, Chem. Mater. 27, 6524 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01602
158.
158. M. I. Mejia, J. M. Marin, G. Restrepo, C. Pulgarin, E. Mielczarski, J. Mielczarski, Y. Arroyo, J.-C. Lavanchy, and J. Kiwi, Appl. Catal. B-Environ. 91, 481 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.06.017
159.
159. Q. Du, J. Wu, and H. Yang, ACS Catal. 4, 144 (2014).
http://dx.doi.org/10.1021/cs400944p
160.
160. M. Kemell, V. Pore, M. Ritala, and M. Leskelä, Chem. Vap. Deposition 12, 419 (2006).
http://dx.doi.org/10.1002/cvde.200604224
161.
161. F. Kayaci, S. Vempati, C. Ozgit-Akgun, I. Donmez, N. Biyikli, and T. Uyar, Nanoscale 6, 5735 (2014).
http://dx.doi.org/10.1039/c3nr06665g
162.
162. C. Liu, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh, and T.-P. Perng, Small 5, 1535 (2009).
http://dx.doi.org/10.1002/smll.200900278
163.
163. A. A. Dameron et al., Appl. Surf. Sci. 258, 5212 (2012).
http://dx.doi.org/10.1016/j.apsusc.2012.01.139
164.
164. S. T. Meek, J. A. Greathouse, and M. D. Allendorf, Adv. Mater. 23, 249 (2011).
http://dx.doi.org/10.1002/adma.201002854
165.
165. T. Suntola and J. Antson, U.S. patent 4,058,430 (15 November 1977).
166.
166. P. Poodt, A. Lankhorst, F. Roozeboom, K. Spee, D. Maas, and A. Vermeer, Adv. Mater. 22, 3564 (2010).
http://dx.doi.org/10.1002/adma.201000766
167.
167. P. Poodt, R. Knaapen, A. Illiberi, F. Roozeboom, and A. van Asten, J. Vac. Sci. Technol. A 30, 01A142 (2012).
http://dx.doi.org/10.1116/1.3667113
168.
168. P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer, J. Vac. Sci. Technol. Vac. Surf. Films 30, 010802 (2012).
http://dx.doi.org/10.1116/1.3670745
169.
169. B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, J. Aerosol Sci. 38, 550 (2007).
http://dx.doi.org/10.1016/j.jaerosci.2007.03.008
170.
170. T. Tynell, I. Terasaki, H. Yamauchi, and M. Karppinen, J. Mater. Chem. A 1, 13619 (2013).
http://dx.doi.org/10.1039/c3ta12909h
171.
171. B. R. Sutherland et al., Adv. Mater. 27, 53 (2015).
http://dx.doi.org/10.1002/adma.201403965
172.
172. J. P. Klesko, C. M. Thrush, and C. H. Winter, Chem. Mater. 27, 4918 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01707
173.
173. J. Slade, M. Agpaoa-Kraus, J. Bowman, A. Riecker, T. Tiano, C. Carey, and P. Wilson, MRS Proc. 736, D3.1.1D3.1.7 (2002).
http://dx.doi.org/10.1557/PROC-736-D3.1
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/34/1/10.1116/1.4938104
Loading
/content/avs/journal/jvsta/34/1/10.1116/1.4938104
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/34/1/10.1116/1.4938104
2015-12-28
2016-09-26

Abstract

Textile materials, including woven cotton,polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition(ALD) has a unique ability to form highly uniform and conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALDcoating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALDcoatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/34/1/1.4938104.html;jsessionid=kWs15B0bH0dhVau1GDjr5dzQ.x-aip-live-06?itemId=/content/avs/journal/jvsta/34/1/10.1116/1.4938104&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/34/1/10.1116/1.4938104&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/34/1/10.1116/1.4938104'
Right1,Right2,Right3,