Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
2. G. Belenky, L. Shterengas, D. Donetsky, M. Kisin, and G. Kipshidze, Jpn. J. Appl. Phys. 47, 8236 (2008).
3. C. Grein, P. Young, M. Flatté, and H. Ehrenreich, J. Appl. Phys. 78, 7143 (1995).
4. M. G. Mauk, Mid-Infrared Semiconductor Optoelectronics ( Springer Science/Business Media, London, 2006), pp. 673.
5. M. Francoeur, R. Vaillon, and M. P. Mengüç, IEEE Trans. Energy Convers. 26, 686 (2011).
6. K. Mahalingam, K. G. Eyink, G. J. Brown, D. L. Dorsey, C. F. Kisielowski, and A. Thust, Appl. Phys. Lett. 88, 091904 (2006).
7. V. A. Mishurnyi, F. De Anda, A. Y. Gorbatchev, V. I. Vasil'ev, and N. N. Faleev, J. Cryst. Growth. 180, 34 (1997).
8. C. Meyer, N. Cole, C. Matzat, E. Cheng, and G. Triplett, J. Electron. Mater. 44, 1311 (2015).
9. S. Adachi, Physical Properties of III-V Semiconductor Compounds ( Wiley, New York, 1992).
10. I. Sela, I. H. Campbell, B. K. Laurich, D. L. Smith, L. A. Samoska, C. R. Bolognesi, A. C. Gossard, and H. Kroemer, J. Appl. Phys. 70, 5608 (1991).
11. W. Ingrid De, Semicond. Sci. Technol. 11, 139 (1996).
12. S. Adachi, J. Appl. Phys. 61, 4869 (1987).
13. D. E. Aspnes and A. A. Studna, Phys. Rev. B: Condens. Matter 27, 985 (1983).
14. K. Aoki, E. Anastassakis, and M. Cardona, Phys. Rev. B: Condens. Matter 30, 681 (1984).
15. A. Freundlich, G. Neu, A. Leycuras, R. Carles, and C. Verie, Mater. Res. Soc. Symp. Proc. 116, 251 (1988).
16. F. Cerdeira, C. J. Buchenauer, F. H. Pollak, and M. Cardona, Phys. Rev. B: Condens. Matter 5, 580 (1972).
17. S. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials ( Springer Science/Business Media, London, 2006), pp. 737748.
18. R. G. Bedford, G. Triplett, D. H. Tomich, S. W. Koch, J. Moloney, and J. Hader, J. Appl. Phys. 110, 073108 (2011).

Data & Media loading...


Article metrics loading...



InGaSb is a ternary semiconductor material that offers excellent electronic properties as well as a widely tunable bandgap range (1.7–7.3 m). However, because of the potentially large lattice mismatch between InGaSb and GaSb (up to ∼6%), it is inherently difficult to produce large area, high-quality, defect-free InGaSb epilayers. Studying crystal deformation processes that ultimately enable gliding dislocations in InGaSb epilayers, as well as the morphologies that result from these processes, is critical for controlling quantum properties in InGaSb devices. In this study, InGaSb nanostructures were produced by a solid-source molecular beam epitaxy on undoped GaSb (100) substrates and were examined using various techniques including scanning electron microscopy, energy dispersive spectroscopy, and (micro) Raman spectroscopy. Characterization data demonstrates that with increasing lattice mismatch (compressive strain), there are two distinct regions across the sample, specifically along the 〈110〉 dislocation direction: those with and without epilayer strain. Both regions can be exploited and exhibit high-quality single crystal material, but the strained regions also consist of a wetting layer, strained alloys, and clusters. Epilayer strain, lateral compositional gradients, and biaxial stress were analyzed as a function of Raman shift in these layers and revealed dependencies on the influence of dislocation slip planes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd