Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvsta/34/5/10.1116/1.4961452
1.
J. Goldak, L. T. Lloyd, and C. S. Barrett, Phys. Rev. 144, 478 (1966).
http://dx.doi.org/10.1103/PhysRev.144.478
2.
R. H. Nielsen and G. Wilfing, in Ulmann's Encyclopedia of Industrial Chemistry ( Wiley-VCH, Germany, 2010).
3.
B. Lustman and F. Kerze, Jr., Metallurgy of Zirconium ( McGraw-Hill Book Company, New York, 1955).
4.
L. Xu, Y. Xiao, A. van Sandwijk, Q. Xu, and Y. Yang, J. Nucl. Mater. 466, 21 (2015).
http://dx.doi.org/10.1016/j.jnucmat.2015.07.010
5.
S. C. Lumley, S. T. Murphy, P. A. Burr, R. W. Grimes, P. R. Chard-Tuckey, and M. R. Wenman, J. Nucl. Mater. 437, 122 (2013).
http://dx.doi.org/10.1016/j.jnucmat.2013.01.335
6.
L. Mercatelli et al., Energy Procedia 49, 468 (2014).
http://dx.doi.org/10.1016/j.egypro.2014.03.050
7.
A. Singh, N. Kumar, P. Kuppusami, T. N. Prasanthi, P. Chandramohan, S. Dash, M. P. Srinivasan, E. Mohandas, and A. K. Tyagi, Wear 280–281, 22 (2012).
http://dx.doi.org/10.1016/j.wear.2012.01.013
8.
E. G. Njoroge, C. C. Theron, J. B. Malherbe, and O. M. Ndwandwe, Nucl. Instrum. Methods Phys. Res., Sect. B 332, 138 (2014).
http://dx.doi.org/10.1016/j.nimb.2014.02.047
9.
K. Benouareth, P. Tristant, C. Jaoul, C. Le Niniven, C. Nouveau, C. Dublanche-Tixier, and A. Bouabellou, Vacuum 125, 234 (2016).
http://dx.doi.org/10.1016/j.vacuum.2015.11.002
10.
W. Liu, C. Wen, Q. Liu, L. Mao, X. Zhou, X. Long, and S. Peng, J. Nucl. Mater. 461, 325 (2015).
http://dx.doi.org/10.1016/j.jnucmat.2015.03.035
11.
Omega Transactions in Measurement and Control, Technical Reference, available at https://www.omega.com/literature/transactions/.
12.
E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications ( Springer US, Boston, MA, 2009), pp. 55176.
13.
W. Bond, Acta Crystallogr. 13, 814 (1960).
http://dx.doi.org/10.1107/S0365110X60001941
14.
M. F. Chung and L. H. Jenkins, Surf. Sci. 22, 479 (1970).
http://dx.doi.org/10.1016/0039-6028(70)90099-3
15.
M. Y. Zhou, R. H. Milne, M. A. Karolewski, D. C. Frost, and K. A. R. Mitchell, Surf. Sci. Lett. 139, L181 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90002-5
16.
D. Briggs and M. P. Seah, Auger and X-ray Photoelectron Spectroscopy ( Wiley, New York, 1990).
17.
O. Wilhelmsson et al., J. Cryst. Growth 291, 290 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.03.008
18.
P. O. Å. Persson, S. Kodambaka, I. Petrov, and L. Hultman, Acta Mater. 55, 4401 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.04.006
19.
A. M. Kliauga and M. Ferrante, J. Mater. Sci. 35, 4243 (2000).
http://dx.doi.org/10.1023/A:1004815830980
20.
T. Wang, Z. Jin, and J.-C. Zhao, J. Phase Equilib. 22, 544 (2001).
http://dx.doi.org/10.1007/s11669-001-0072-4
21.
R. E. Loehman, F. M. Hosking, B. Gauntt, P. G. Kotula, and P. Lu, J. Mater. Sci. 40, 2319 (2005).
http://dx.doi.org/10.1007/s10853-005-1952-5
22.
R. E. Loehman and A. P. Tomsia, Acta Metall. Mater. 40, S75 (1992).
http://dx.doi.org/10.1016/0956-7151(92)90266-H
23.
X. A. Zhao, E. Kolawa, and M. A. Nicolet, J. Vac. Sci. Technol., A 4, 3139 (1986).
http://dx.doi.org/10.1116/1.573642
http://aip.metastore.ingenta.com/content/avs/journal/jvsta/34/5/10.1116/1.4961452
Loading
/content/avs/journal/jvsta/34/5/10.1116/1.4961452
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvsta/34/5/10.1116/1.4961452
2016-08-31
2016-09-28

Abstract

The authors report the growth of epitaxial Zr(0 0 0 1) thin films on AlO(0 0 0 1) substrates at a temperature of 700 °C via dc magnetron sputtering in an ultrahigh vacuum deposition system equipped with facilities for chemical vapor deposition, low-energy electron diffraction, and Auger electron spectroscopy. Zr layers with a nominal thickness of ∼220 nm are deposited at a rate of ∼0.06 nm/s in 10 mTorr Ar atmosphere. Auger electron spectra of the as-deposited film surface reveal the presence of a Zr peak at 145 eV and Hf peak at 172 eV, the latter due to the presence of Hf impurities in the Zr sputter target. low-energy electron diffraction patterns acquired from the Zr sample show sixfold symmetric spots with an in-plane lattice spacing of 0.31 ± 0.02 nm, characteristic of Zr(0 0 0 1)–(1 × 1) surface. Cross-sectional transmission electron microscopy images reveal columnar growth and the formation of a crystalline, 22 ± 8 nm thick, interfacial layer. Energy dispersive x-ray spectra obtained from this region reveal the presence of both Zr and Al. The authors attribute the formation of this interfacial layer to plasma-induced substrate decomposition during sputtering followed by interdiffusion of Al and Zr at the film–substrate interface. ω-2θ x-ray diffraction data show that the Zr layers are single-phase with hexagonal close-packed structure. Using high-resolution symmetric as well as asymmetric reciprocal space maps, the authors determined that the film is fully relaxed with in-plane and out-of-plane orientation lattice parameters of 0.324 and 0.516 nm, respectively, and identified epitaxial orientation relationships as Zr(0 0 0 4) ‖ AlO(0 0 0 12) and Zr() ‖ AlO().

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvsta/34/5/1.4961452.html;jsessionid=65D0cFDSBdDmq16dtfFZYFc2.x-aip-live-02?itemId=/content/avs/journal/jvsta/34/5/10.1116/1.4961452&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvsta
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvsta.avspublications.org/34/5/10.1116/1.4961452&pageURL=http://scitation.aip.org/content/avs/journal/jvsta/34/5/10.1116/1.4961452'
Right1,Right2,Right3,