Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells. 95, 1421 (2011).
K. Ito and T. Nakazawa, Jpn. J. Appl. Phys., Part 1 27, 2094 (1988).
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).
M. Johnson, M. Manno, X. Zhang, C. Leighton, and E. S. Aydil, J. Vac. Sci. Technol., A. 32, 061203 (2014).
T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, and H. Ogawa, J. Phys. Chem. Solids. 66, 1978 (2005).
K. Ramasamy, M. A. Malik, and P. O'Brien, Chem. Sci. 2, 1170 (2011).
S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, Adv. Energy Mater. 2, 253 (2012).
S. Thiruvenkadam, D. Jovina, and A. Leo Rajesh, Sol. Energy 106, 166 (2014).
N. Kamoun, H. Bouzouita, and B. Rezig, Thin Solid Films 515, 5949 (2007).
H. Xin, J. K. Katahara, I. L. Braly, and H. W. Hillhouse, Adv. Energy Mater. 4, 1301823 (2014).
B. D. Chernomordik, A. E. Béland, D. D. Deng, L. F. Francis, and E. S. Aydil, Chem. Mater. 26, 3191 (2014).
C. K. Miskin, W.-C. Yang, C. J. Hages, N. J. Carter, C. S. Joglekar, E. A. Stach, and R. Agrawal, Prog. Photovoltaics 23, 654 (2015).
W. Hsu et al., ACS Nano 8, 9164 (2014).
L. Vauche, J. Dubois, A. Laparre, M. Pasquinelli, S. Bodnar, P.-P. Grand, and S. Jaime, Phys. Status Solidi A 212, 103 (2015).
M. R. R. Menon, S. Ranjbar, M. G. Sousa, P. A. Fernandes, and A. F. da Cunha, Mater. Res. Express 1, 045046 (2014).
C. Munn, S. Haran, and I. Seok, Proc. SPIE 8691, 86911A (2013).
M. Hösel and F. C. Krebs, J. Mater. Chem. 22, 15683 (2012).
J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren, and U. S. Schubert, Adv. Mater. 24, 2620 (2012).
R. Dharmadasa, I. M. Dharmadasa, and T. Druffel, Adv. Eng. Mater. 16, 1351 (2014).
H. A. Colorado, S. R. Dhage, and H. T. Hahn, Mater. Sci. Eng. B 176, 1161 (2011).
R. Dharmadasa, B. W. Lavery, I. M. Dharmadasa, and T. L. Druffel, ACS Appl. Mater. Interfaces 6, 5034 (2014).
S. R. Dhage, H.-S. Kim, and H. T. Hahn, J. Electron. Mater. 40, 122 (2011).
M. Singh, J. Jiu, T. Sugahara, and K. Suganuma, Thin Solid Films 565, 11 (2014).
B. D. Chernomordik, A. E. Béland, N. D. Trejo, A. A. Gunawan, D. D. Deng, K. A. Mkhoyan, and E. S. Aydil, J. Mater. Chem. A 2, 10389 (2014).
See supplementary material at for additional experimental details and results.[Supplementary Material]
S. Sohila, M. Rajalakshmi, C. Ghosh, A. K. Arora, and C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011).
D. H. Timm, B. B. Guzina, and V. R. Voller, Int. J. Solids Struct. 40, 125 (2003).
A.-J. Cheng, M. Manno, A. Khare, C. Leighton, S. A. Campbell, and E. S. Aydil, J. Vac. Sci. Technol., A 29, 051203 (2011).
J. J. Scragg, J. T. Waütjen, M. Edoff, T. Ericson, T. Kubart, and C. Platzer-Bjoürkman, J. Am. Chem. Soc. 134, 19330 (2012).
J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-bj, Chem. Mater. 23, 4625 (2011).
M. Huang, Z. Suo, Q. Ma, and H. Fujimoto, J. Mater. Res. 15, 1239 (2000).
G. Kaune, S. Hartnauer, and R. Scheer, Phys. Status Solidi 211, 1991 (2014).
X. He and H. Shen, Phys. Scr. 85, 035302 (2012).
High Temperature Glass Melt Property Database for Process Modeling, edited by T. P. Seward III and T. Vascott, 1st ed. ( The American Ceramic Society, Westerville, OH, 2005).
Y. Zhang et al., RSC Adv. 4, 23666 (2014).
R. I. Billmers and A. L. Smith, J. Phys. Chem. 95, 4242 (1991).
M. G. Sousa, A. F. da Cunha, P. A. Fernandes, J. P. Teixeira, R. A. Sousa, and J. P. Leitão, Sol. Energy Mater. Sol. Cells. 126, 101 (2014).
M. Johnson, S. V. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. V. Veryovkin, C. Leighton, and E. S. Aydil, Energy Environ. Sci. 7, 1931 (2014).

Data & Media loading...


Article metrics loading...



A promising method for forming the absorber layer in copper zinc tin sulfide [CuZnSnS (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm2) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 m−1, depending on the flash intensity and total number of flashes. Low density cracking (0.01 m−1, ∼1 crack per 100 m) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur vapor prevented both low- and high-density cracking as well as blistering. However, grain growth was limited even after annealing with 400 flashes. This lack of grain growth is attributed to a difficulty of maintaining high sulfur vapor pressure and absence of alkali metal impurities when Mo foil substrates are used.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd