Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den Nijs, Phys. Rev. Lett. 49, 405 (1982).
K. S. Novoselov, Science 306, 666 (2004).
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
M. Bianchi, D. Guan, S. Bao, J. Mi, B. B. Iversen, P. D. King, and P. Hofmann, Nat. Commun. 1, 128 (2010).
J. Suh, D. Fu, X. Liu, J. K. Furdyna, K. M. Yu, W. Walukiewicz, and J. Wu, Phys. Rev. B 89, 115307 (2014).
H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
C. Chen et al., Proc. Natl. Acad. Sci. 109, 3694 (2012).
D. Hsieh et al., Nature 460, 1101 (2009).
Y. Xia et al., Nat. Phys. 5, 398 (2009).
V. B. Nascimento, V. E. De Carvalho, R. Paniago, E. A. Soares, L. O. Ladeira, and H. D. Pfannes, J. Electron Spectrosc. Relat. Phenom. 104, 99 (1999).
M. R. Thuler, R. L. Benbow, and Z. Hurych, Chem. Phys. 71, 265 (1982).
D. Kong et al., ACS Nano 5, 4698 (2011).
G. Jia, Z. Wu, P. Wang, J. Yao, and K. Chang, Sci. Rep. 6, 22191 (2016).
D. D. dos Reis et al., Phys. Rev. B 88, 041404(R) (2013).
X. He, W. Zhou, Z. Y. Wang, Y. N. Zhang, J. Shi, R. Q. Wu, and J. A. Yarmoff, Phys. Rev. Lett. 110, 156101 (2013).
R. Shokri, H. L. Meyerheim, S. Roy, K. Mohseni, A. Ernst, M. M. Otrokov, E. V. Chulkov, and J. Kirschner, Phys. Rev. B 91, 205430 (2015).
D. L. Medlin and G. J. Snyder, JOM 65, 390 (2013).
H. M. Benia, C. Lin, K. Kern, and C. R. Ast, Phys. Rev. Lett. 107, 177602 (2011).
P. Gehring, F. B. Reusch, S. S. Mashhadi, M. Burghard, and K. Kern, Nanotechnology 27, 285201 (2016).
C. R. Thomas, M. K. Vallon, M. G. Frith, H. Sezen, S. K. Kushwaha, R. J. Cava, J. Schwartz, and S. L. Bernasek, Chem. Mater. 28, 35 (2016).
L. V. Yashina et al., ACS Nano 7, 5181 (2013).
V. V. Atuchin et al., Cryst. Growth Des. 11, 5507 (2011).
A. Di Cicco and A. Filipponi, Phys. Rev. B 49, 12564 (1994).
D. Biswas, S. Thakur, K. Ali, G. Balakrishnan, and K. Maiti, e-print arXiv:14110801.
D. Hsieh, F. Mahmood, J. W. McIver, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. Lett. 107, 077401 (2011).
J. W. McIver, D. Hsieh, S. G. Drapcho, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. B 86, 035327 (2012).
Y. D. Glinka, S. Babakiray, T. A. Johnson, M. B. Holcomb, and D. Lederman, Phys. Rev. B 91, 195307 (2015).
Y. Q. An, A. J. Green, and A. C. Diebold, Phys. Rev. B 93, 241308 (2016).
N. Kumar, B. A. Ruzicka, N. P. Butch, P. Syers, K. Kirshenbaum, J. Paglione, and H. Zhao, Phys. Rev. B 83, 235306 (2011).
D. Hsieh, J. W. McIver, D. H. Torchinsky, D. R. Gardner, Y. S. Lee, and N. Gedik, Phys. Rev. Lett. 106, 057401 (2011).
A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, NIST X-Ray Photoelectron Spectroscopy Database, 4.1 ed. (Measurement Services Division of the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, 2012).
Collaboration: Authors and Editors of the Volumes III/17e-17f-41c, Non-Tetrahedrally Bonded Elements Binary Compounds I, edited by O. Madelung, U. Rössler, and M. Schulz ( Springer, Berlin, 1998), pp. 14.
Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
D. L. Medlin and N. Y. C. Yang, J. Electron. Mater. 41, 1456 (2012).
D. Nečas and P. Klapetek, Open Phys. 10, 181 (2012).
S. K. Mishra, S. Satpathy, and O. Jepsen, J. Phys. Condens. Matter 9, 461 (1997).
H. Bando, K. Koizumi, Y. Oikawa, K. Daikohara, V. A. Kulbachinskii, and H. Ozaki, J. Phys. Condens. Matter 12, 5607 (2000).
E. Bersch, M. Di, S. Consiglio, R. D. Clark, G. J. Leusink, and A. C. Diebold, J. Appl. Phys. 107, 043702 (2010).
A. K. Livesey and G. C. Smith, J. Electron. Spectrosc. Relat. Phenom. 67, 439 (1994).
R. Opila, Prog. Surf. Sci. 69, 125 (2002).
H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).
Y. Sharma, P. Srivastava, A. Dashora, L. Vadkhiya, M. K. Bhayani, R. Jain, A. R. Jani, and B. L. Ahuja, Solid State Sci. 14, 241 (2012).
J. Humlíček, D. Hemzal, A. Dubroka, O. Caha, H. Steiner, G. Bauer, and G. Springholz, Phys. Scr. T 2014, T162 (2014).
K. Jayachandran, Electrical, Optical, and Structural Studies in Bismuth, Antimony, Bismuth Oxide and Antimony Oxide Thin Films ( Mahatma Gandhi University, Kottayam, Kerala, India, 1997).
L. Leontie, J. Optoelectron. Adv. Mater. 8, 1221 (2006).
K. Tripathi, M. Husain, and M. Zulfequar, Chalcogenide Lett. 6, 517 (2009).
Y. R. Shen, Nature 337, 519 (1989).
R. M. Corn and D. A. Higgins, Chem. Rev. 94, 107 (1994).
See supplementary material at for more information on the distinction between surface patches and contaminants as seen in AFM, the distinction between Se 3p peaks and oxide peaks in the Bi 4f energy range of XPS, and the XRD measurement of crystal orientation for reference in SHG experiments.[Supplementary Material]

Data & Media loading...


Article metrics loading...



An understanding of the aging and oxidation of the (0001) surface of BiSe is critical to a comprehensive physical picture of its topologically protected surface states. Here, the authors contribute new experimental observations about the aging and oxidation process. The authors find that surface aging in ambient conditions occurs in two major steps. Within 2 h of exfoliation, a series of ∼3.2 Å high islands are observed by atomic force microscopy over approximately 10% of the surface. Subsequently, patch growth stops, and oxidation begins after the 2 h and continues until one quintuple layer has been oxidized. X-ray photoelectron spectroscopy shows no sign of oxidation before ∼120 min of exposure to air, and the oxygen 1 s peak, as well as oxidized Se 3d and Bi 4d peaks, are clearly present after ∼190 min of ambient exposure. Variable angle spectroscopic ellipsometry indicates that the oxidation of a full quintuple layer occurs on the time scale of days. These results are in good agreement with the time dependent changes observed in the surface crystal structure by second harmonic generation. In addition to providing the ability to nondestructively measure oxide on the surface of BiSe crystals, ellipsometry can be used to identify the thickness of BiSe flakes. With these methods, the authors have constructed a consistent, experimentally based model of aging process at the surface of BiSe.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd