Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/27/3/10.1116/1.3137964
1.
1.R. G. Forbes, J. Vac. Sci. Technol. B 26, 788 (2008).
http://dx.doi.org/10.1116/1.2827505
2.
2.Vacuum Microelectronics, edited by W. Zhu (Wiley, New York, 2001).
3.
3.C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
http://dx.doi.org/10.1063/1.322600
4.
4.C. A. Spindt, I. Brodie, C. E. Holland, and P. R. Schwoebel, Vacuum Microelectronics (Ref. 2), Chap. 4.
5.
5.N. de Jonge and J. -M. Bonard, Philos. Trans. R. Soc. London, Ser. A 362, 2239 (2004).
http://dx.doi.org/10.1098/rsta.2004.1438
6.
6.T. E. Stern, B. S. Gossling, and R. H. Fowler, Proc. R. Soc. London, Ser. A 124, 699 (1929).
http://dx.doi.org/10.1098/rspa.1929.0147
7.
7.F. R. Abbott and J. E. Henderson, Phys. Rev. 56, 113 (1939).
http://dx.doi.org/10.1103/PhysRev.56.113
8.
8.R. G. Forbes and K. L. Jensen, Ultramicroscopy 89, 17 (2001).
http://dx.doi.org/10.1016/S0304-3991(01)00101-2
9.
9.R. G. Forbes, Appl. Phys. Lett. 92, 193105 (2008).
http://dx.doi.org/10.1063/1.2918446
10.
10.A. A. Talin, K. A. Dean, and J. E. Jaskie, Solid-State Electron. 45, 963 (2001).
http://dx.doi.org/10.1016/S0038-1101(00)00279-3
11.
11.R. G. Forbes, C. J. Edgcombe, and U. Valdrè, Ultramicroscopy 95, 57 (2003).
http://dx.doi.org/10.1016/S0304-3991(02)00297-8
12.
12.L. -O. Nilsson, Ph.D. thesis, University of Freiburg, 2001.
13.
13.L. Nilsson, O. Groening, P. Groening, O. Kuettel, and L. Schlapbach, J. Appl. Phys. 90, 768 (2001).
http://dx.doi.org/10.1063/1.1379559
14.
14.W. P. Dyke and J. K. Trolan, Phys. Rev. 89, 799 (1953).
http://dx.doi.org/10.1103/PhysRev.89.799
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/27/3/10.1116/1.3137964
Loading
/content/avs/journal/jvstb/27/3/10.1116/1.3137964
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/27/3/10.1116/1.3137964
2009-05-22
2016-05-31

Abstract

In the context of electron emission from surfaces, the area efficiency of emission is defined as the ratio of the effective area of high-density emission (called the notional emission area) to the apparent area of an emitting sample as judged by its geometrical size (called the macroscopic area). For practical large-area field emitters, values of are always very small in comparison with 1, perhaps often less than . This article argues that to avoid errors of interpretation, it is best to write the equations that describe cold field electron emission from large-area emitters in forms that explicitly include . Also, definitions of areas and current densities should be stated with care. It is shown that electrostatic arguments can provide a rough upper limit for , above which the design of an array of identical postlike emitters becomes inefficient. This upper limit is of the order of , where is the field enhancement factor for one of these emitters when standing isolated. Practical emitters will normally have . A qualitative relationship between the onset voltage and is noted.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/27/3/1.3137964.html;jsessionid=icA7vKWbNNOh3lfHbUBhWmfY.x-aip-live-06?itemId=/content/avs/journal/jvstb/27/3/10.1116/1.3137964&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/27/3/10.1116/1.3137964&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/27/3/10.1116/1.3137964'
Right1,Right2,Right3,