Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/28/5/10.1116/1.3480961
1.
1.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
2.
2.A. K. Geim and A. H. MacDonald, Phys. Today 60(8), 35 (2007).
http://dx.doi.org/10.1063/1.2774096
3.
3.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
4.
4.Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
5.
5.C. Berger et al., Science 312, 1191 (2006).
http://dx.doi.org/10.1126/science.1125925
6.
6.K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.096802
7.
7.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
8.
8.C. Berger et al., J. Phys. Chem. B 108, 19912 (2004).
http://dx.doi.org/10.1021/jp040650f
9.
9.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. -S. Pei, Appl. Phys. Lett. 93, 113103 (2008).
http://dx.doi.org/10.1063/1.2982585
10.
10.A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
http://dx.doi.org/10.1021/nl801827v
11.
11.X. S. Li et al., Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
12.
12.A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, Surf. Sci. 48, 463 (1975).
http://dx.doi.org/10.1016/0039-6028(75)90419-7
13.
13.I. Forbeaux, J. -M. Themlin, A. Charrier, F. Thibaudau, and J. -M. Debever, Appl. Surf. Sci. 162–163, 406 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00224-5
14.
14.Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. -Y. Chiu, A. Grill, and Ph. Avouris, Science 327, 662 (2010).
http://dx.doi.org/10.1126/science.1184289
15.
15.S. W. King, R. Kern, M. Benjamin, J. Barnak, R. Nemanich, and R. Davis, J. Electrochem. Soc. 146, 3448 (1999).
http://dx.doi.org/10.1149/1.1392494
16.
16.J. B. Hannon and R. M. Tromp, Phys. Rev. B 77, 241404(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.241404
17.
17.D. B. Farmer, H. -Y. Chiu, Y. -M. Lin, K. A. Jenkins, F. Xia, and Ph. Avouris, Nano Lett. 9, 4474 (2009).
http://dx.doi.org/10.1021/nl902788u
18.
18.C. Faugeras, A. Nerrière, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, Appl. Phys. Lett. 92, 011914 (2008).
http://dx.doi.org/10.1063/1.2828975
19.
19.A. C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
20.
20.P. J. James, M. Antognozzi, J. Tamayo, T. J. McMaster, J. M. Newton, and M. J. Miles, Langmuir 17, 349 (2001).
http://dx.doi.org/10.1021/la000332h
21.
21.W. Norimatsu and M. Kusunoki, Chem. Phys. Lett. 468, 52 (2009).
http://dx.doi.org/10.1016/j.cplett.2008.11.095
22.
22.T. Seyller et al., Surf. Sci. 600, 3906 (2006).
http://dx.doi.org/10.1016/j.susc.2006.01.102
23.
23.J. Kedzierski, P. -L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast, M. Sprinkle, C. Berger, and W. A. de Heer, IEEE Trans. Electron Devices 55, 2078 (2008).
http://dx.doi.org/10.1109/TED.2008.926593
24.
24.D. K. Schroder, Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 1990), Chap. 5.
25.
25.Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and Ph. Avouris, Nano Lett. 9, 422 (2009).
http://dx.doi.org/10.1021/nl803316h
26.
26.Y. -M. Lin, H. -Y. Chiu, K. A. Jenkins, D. B. Farmer, and P. Avouris, IEEE Electron Device Lett. 31, 68 (2010).
http://dx.doi.org/10.1109/LED.2009.2034876
27.
27.K. V. Emtsev et al., Nature Mater. 8, 203 (2009).
http://dx.doi.org/10.1038/nmat2382
28.
28.J. S. Moon et al., IEEE Electron Device Lett. 30, 650 (2009).
http://dx.doi.org/10.1109/LED.2009.2020699
29.
29.B. L. VanMil et al., European Conference on Silicon Carbide and Related Materials, 2008 (unpublished);
29.B. L. VanMil et al., Mater. Sci. Forum 211, 615 (2009).
30.
30.T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, and P. D. Ye, Appl. Phys. Lett. 95, 172105 (2009).
http://dx.doi.org/10.1063/1.3254329
31.
31.C. Dimitrakopoulos et al., 2009 Fall MRS Meeting, Boston, MA, 30 November–4 December 2009 (unpublished), Abstract No. L7.7.
32.
32.A. Tzalenchuk et al., Nat. Nanotechnol. 5, 186 (2010).
http://dx.doi.org/10.1038/nnano.2009.474
33.
33.S. Weingart, C. Bock, U. Kunze, K. V. Emtsev, Th. Seyller, and L. Ley, Physica E 42, 687 (2010).
http://dx.doi.org/10.1016/j.physe.2009.11.006
34.
34.X. Li, X. Wu, M. Sprinkle, F. Ming, M. Ruan, Y. Hu, C. Berger, and W. A. de Heer, Phys. Status Solidi A 207, 286 (2010).
http://dx.doi.org/10.1002/pssa.200982453
35.
35.J. A. Robinson et al., Nano Lett. 9, 2873 (2009).
http://dx.doi.org/10.1021/nl901073g
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/28/5/10.1116/1.3480961
Loading
/content/avs/journal/jvstb/28/5/10.1116/1.3480961
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/28/5/10.1116/1.3480961
2010-09-07
2016-05-02

Abstract

Up to two layers of epitaxialgraphene have been grown on the Si-face of 2 in. SiC wafers exhibiting room-temperature Hall mobilities up to , measured from ungated, large, Hall bars, and up to , from top-gated, small, Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annealing step in argon for epitaxialgraphene formation. The structure and morphology of this graphene has been characterized using atomic force microscopy, high resolution transmission electron microscopy, and Raman spectroscopy. Furthermore, top-gated radio frequency field-effect transistors (rf-FETs) with a peak cutoff frequency of 100 GHz for a gate length of 240 nm were fabricated using epitaxialgraphenegrown on the Si-face of SiC that exhibited Hall mobilities up to from ungated Hall bars and from top-gated ones. This is by far the highest cutoff frequency measured from any kind of graphene.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/28/5/1.3480961.html;jsessionid=0CaiG+XgM3gB0TP04hwib2Re.x-aip-live-06?itemId=/content/avs/journal/jvstb/28/5/10.1116/1.3480961&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd