Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
2.A. K. Geim and A. H. MacDonald, Phys. Today 60(8), 35 (2007).
3.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
4.Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
5.C. Berger et al., Science 312, 1191 (2006).
6.K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 101, 096802 (2008).
7.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
8.C. Berger et al., J. Phys. Chem. B 108, 19912 (2004).
9.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. -S. Pei, Appl. Phys. Lett. 93, 113103 (2008).
10.A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
11.X. S. Li et al., Science 324, 1312 (2009).
12.A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, Surf. Sci. 48, 463 (1975).
13.I. Forbeaux, J. -M. Themlin, A. Charrier, F. Thibaudau, and J. -M. Debever, Appl. Surf. Sci. 162–163, 406 (2000).
14.Y. -M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. -Y. Chiu, A. Grill, and Ph. Avouris, Science 327, 662 (2010).
15.S. W. King, R. Kern, M. Benjamin, J. Barnak, R. Nemanich, and R. Davis, J. Electrochem. Soc. 146, 3448 (1999).
16.J. B. Hannon and R. M. Tromp, Phys. Rev. B 77, 241404(R) (2008).
17.D. B. Farmer, H. -Y. Chiu, Y. -M. Lin, K. A. Jenkins, F. Xia, and Ph. Avouris, Nano Lett. 9, 4474 (2009).
18.C. Faugeras, A. Nerrière, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, Appl. Phys. Lett. 92, 011914 (2008).
19.A. C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006).
20.P. J. James, M. Antognozzi, J. Tamayo, T. J. McMaster, J. M. Newton, and M. J. Miles, Langmuir 17, 349 (2001).
21.W. Norimatsu and M. Kusunoki, Chem. Phys. Lett. 468, 52 (2009).
22.T. Seyller et al., Surf. Sci. 600, 3906 (2006).
23.J. Kedzierski, P. -L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast, M. Sprinkle, C. Berger, and W. A. de Heer, IEEE Trans. Electron Devices 55, 2078 (2008).
24.D. K. Schroder, Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 1990), Chap. 5.
25.Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and Ph. Avouris, Nano Lett. 9, 422 (2009).
26.Y. -M. Lin, H. -Y. Chiu, K. A. Jenkins, D. B. Farmer, and P. Avouris, IEEE Electron Device Lett. 31, 68 (2010).
27.K. V. Emtsev et al., Nature Mater. 8, 203 (2009).
28.J. S. Moon et al., IEEE Electron Device Lett. 30, 650 (2009).
29.B. L. VanMil et al., European Conference on Silicon Carbide and Related Materials, 2008 (unpublished);
29.B. L. VanMil et al., Mater. Sci. Forum 211, 615 (2009).
30.T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, and P. D. Ye, Appl. Phys. Lett. 95, 172105 (2009).
31.C. Dimitrakopoulos et al., 2009 Fall MRS Meeting, Boston, MA, 30 November–4 December 2009 (unpublished), Abstract No. L7.7.
32.A. Tzalenchuk et al., Nat. Nanotechnol. 5, 186 (2010).
33.S. Weingart, C. Bock, U. Kunze, K. V. Emtsev, Th. Seyller, and L. Ley, Physica E 42, 687 (2010).
34.X. Li, X. Wu, M. Sprinkle, F. Ming, M. Ruan, Y. Hu, C. Berger, and W. A. de Heer, Phys. Status Solidi A 207, 286 (2010).
35.J. A. Robinson et al., Nano Lett. 9, 2873 (2009).

Data & Media loading...


Article metrics loading...



Up to two layers of epitaxialgraphene have been grown on the Si-face of 2 in. SiC wafers exhibiting room-temperature Hall mobilities up to , measured from ungated, large, Hall bars, and up to , from top-gated, small, Hall bars. The growth process involved a combination of a cleaning step of the SiC in a Si-containing gas, followed by an annealing step in argon for epitaxialgraphene formation. The structure and morphology of this graphene has been characterized using atomic force microscopy, high resolution transmission electron microscopy, and Raman spectroscopy. Furthermore, top-gated radio frequency field-effect transistors (rf-FETs) with a peak cutoff frequency of 100 GHz for a gate length of 240 nm were fabricated using epitaxialgraphenegrown on the Si-face of SiC that exhibited Hall mobilities up to from ungated Hall bars and from top-gated ones. This is by far the highest cutoff frequency measured from any kind of graphene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd