Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/29/5/10.1116/1.3623419
1.
1. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
3.
3. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
4.
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
5.
5. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
6.
6. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature (London) 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
7.
7. Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).
http://dx.doi.org/10.1021/nl803316h
8.
8. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
http://dx.doi.org/10.1126/science.1184289
9.
9. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
10.
10. K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, Appl. Phys. Lett. 95, 183105 (2009).
http://dx.doi.org/10.1063/1.3259415
11.
11. H. W. C. Postma, Nano Lett. 10, 420 (2010).
http://dx.doi.org/10.1021/nl9029237
12.
12. G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, Nano Lett. 10, 3163 (2010).
http://dx.doi.org/10.1021/nl102069z
13.
13. C. A. Merchant et al., Nano Lett. 10, 2915 (2010).
http://dx.doi.org/10.1021/nl101046t
14.
14. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, Nature (London) 467, 190 (2010).
http://dx.doi.org/10.1038/nature09379
15.
15. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Nature (London) 454, 319 (2008).
http://dx.doi.org/10.1038/nature07094
16.
16. H. G. Craighead, Science 290, 1532 (2000).
http://dx.doi.org/10.1126/science.290.5496.1532
17.
17. K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).
http://dx.doi.org/10.1063/1.1927327
18.
18. X. K. Lu, H. Huang, N. Nemchuk, and R. S. Ruoff, Appl. Phys. Lett. 75, 193 (1999).
http://dx.doi.org/10.1063/1.124316
19.
19. X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, Nanotechnology 10, 269 (1999).
http://dx.doi.org/10.1088/0957-4484/10/3/308
20.
20. J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano Lett. 5, 287 (2005).
http://dx.doi.org/10.1021/nl048111+
21.
21. Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86, 073104 (2005).
http://dx.doi.org/10.1063/1.1925307
22.
22. Y. B. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett. 94, 176803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.145505
23.
23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
24.
24. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
25.
25. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
26.
26. A. C. Ferrari et al., Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
27.
27. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6, 2667 (2006).
http://dx.doi.org/10.1021/nl061420a
28.
28. C. Berger et al., Science 312, 1191 (2006).
http://dx.doi.org/10.1126/science.1125925
29.
29. K. V. Emtsev et al., Nature Mater. 8, 203 (2009).
http://dx.doi.org/10.1038/nmat2382
30.
30. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature (London) 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
31.
31. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature (London) 448, 457 (2007).
http://dx.doi.org/10.1038/nature06016
32.
32. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
33.
33. C. Gomez-Navarro, M. Burghard, and K. Kern, Nano Lett. 8, 2045 (2008).
http://dx.doi.org/10.1021/nl801384y
34.
34. P. W. Sutter, J. I. Flege, and E. A. Sutter, Nature Mater. 7, 406 (2008).
http://dx.doi.org/10.1038/nmat2166
35.
35. J. Coraux, A. T. N′Diaye, C. Busse, and T. Michely, Nano Lett. 8, 565 (2008).
http://dx.doi.org/10.1021/nl0728874
36.
36. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
http://dx.doi.org/10.1021/nl801827v
37.
37. X. S. Li et al., Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
38.
38. S. Bae et al., Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
39.
39. Z. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature (London) 468, 549 (2010).
http://dx.doi.org/10.1038/nature09579
40.
40. P. Y. Huang et al., Nature (London) 469, 389 (2011).
http://dx.doi.org/10.1038/nature09718
41.
41. K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie, and A. Zettl, ACS Nano 5, 2142 (2011).
http://dx.doi.org/10.1021/nn1033423
42.
42. C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. van der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Nano Lett. 11, 2259 (2011).
http://dx.doi.org/10.1021/nl200429f
43.
43. X. S. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo, and R. S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011).
http://dx.doi.org/10.1021/ja109793s
44.
44. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
45.
45. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London) 446, 60 (2007).
http://dx.doi.org/10.1038/nature05545
46.
46. K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Nature (London) 462, 196 (2009).
http://dx.doi.org/10.1038/nature08582
47.
47. X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature (London) 462, 192 (2009).
http://dx.doi.org/10.1038/nature08522
48.
48. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
http://dx.doi.org/10.1021/nl801457b
49.
49. C. Y. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat. Nanotechnol. 4, 861 (2009).
http://dx.doi.org/10.1038/nnano.2009.267
50.
50. Y. H. Xu, C. Y. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. M. Liu, P. Kim, and J. Hone, Appl. Phys. Lett. 97, 243111 (2010).
http://dx.doi.org/10.1063/1.3528341
51.
51. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
52.
52. M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, and J. Park, Nano Lett. 9, 4479 (2009).
http://dx.doi.org/10.1021/nl902790r
53.
53. B. Aleman et al., ACS Nano 4, 4762 (2010).
http://dx.doi.org/10.1021/nn100459u
54.
54. S. Shivaraman et al., Nano Lett. 9, 3100 (2009).
http://dx.doi.org/10.1021/nl900479g
55.
55. C. R. Dean et al., Nat. Nanotechnol. 5, 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
56.
56. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, and B. H. Houston, Nano Lett. 8, 3441 (2008).
http://dx.doi.org/10.1021/nl8023092
57.
57. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, Nano Lett. 10, 490 (2010).
http://dx.doi.org/10.1021/nl903272n
58.
58. X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
59.
59. A. M. van der Zande et al., Nano Lett. 10, 4869 (2010).
http://dx.doi.org/10.1021/nl102713c
60.
60. L. Y. Jiao, B. Fan, X. J. Xian, Z. Y. Wu, J. Zhang, and Z. F. Liu, J. Am. Chem. Soc. 130, 12612 (2008).
http://dx.doi.org/10.1021/ja805070b
61.
61. R. A. Barton, B. Ilic, A. M. van der Zande, W. S. Whitney, P. L. McEuen, J. M. Parpia, and H. G. Craighead, Nano Lett. 11, 1232 (2011).
http://dx.doi.org/10.1021/nl1042227
62.
62. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84, 4469 (2004).
http://dx.doi.org/10.1063/1.1755417
63.
63. D. W. Carr and H. G. Craighead, J. Vac. Sci. Technol. B 15, 2760 (1997).
http://dx.doi.org/10.1116/1.589722
64.
64. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London) 431, 284 (2004).
http://dx.doi.org/10.1038/nature02905
65.
65. V. Gouttenoire, T. Barois, S. Perisanu, J. L. Leclercq, S. T. Purcell, P. Vincent, and A. Ayari, Small 6, 1060 (2010).
66.
66. T. Mashoff, M. Pratzer, V. Geringer, T. J. Echtermeyer, M. C. Lemme, M. Liebmann, and M. Morgenstern, Nano Lett. 10, 461 (2010).
http://dx.doi.org/10.1021/nl903133w
67.
67. B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, and H. G. Craighead, Appl. Phys. Lett. 86, 193114 (2005).
http://dx.doi.org/10.1063/1.1919395
68.
68. X. Liu, J. F. Vignola, H. J. Simpson, B. R. Lemon, B. H. Houston, and D. M. Photiadis, J. Appl. Phys. 97, 023524 (2005).
69.
69. V. Singh, S. Sengupta, H. S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, and M. M. Deshmukh, Nanotechnology 21, 165204 (2010).
http://dx.doi.org/10.1088/0957-4484/21/16/165204
70.
70. S. Y. Kim and H. S. Park, Nano Lett. 9, 969 (2009).
http://dx.doi.org/10.1021/nl802853e
71.
71. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, and A. Bachtold, Nat. Nanotechnol. 6, 339 (2011).
http://dx.doi.org/10.1038/nnano.2011.71
72.
72. A. K. Huttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, Nano Lett. 9, 2547 (2009).
http://dx.doi.org/10.1021/nl900612h
73.
73. C. Seoanez, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 76, 125427 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125427
74.
74. I. Wilson-Rae, R. A. Barton, S. S. Verbridge, D. R. Southworth, B. Ilic, H. G. Craighead, and J. M. Parpia, Phys. Rev. Lett. 106, 047205 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.047205
75.
75. D. Garcia-Sanchez, A. M. van der Zande, A. S. Paulo, B. Lassagne, P. L. McEuen, and A. Bachtold, Nano Lett. 8, 1399 (2008).
http://dx.doi.org/10.1021/nl080201h
76.
76. W. Z. Bao, F. Miao, Z. Chen, H. Zhang, W. Y. Jang, C. Dames, and C. N. Lau, Nat. Nanotechnol. 4, 562 (2009).
http://dx.doi.org/10.1038/nnano.2009.191
77.
77. K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007).
http://dx.doi.org/10.1021/nl0721113
78.
78. B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, J. Appl. Phys. 95, 3694 (2004).
http://dx.doi.org/10.1063/1.1650542
79.
79. H. J. Mamin and D. Rugar, Appl. Phys. Lett. 79, 3358 (2001).
http://dx.doi.org/10.1063/1.1418256
80.
80. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science 304, 74 (2004).
http://dx.doi.org/10.1126/science.1094419
81.
81. K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533 (2008).
http://dx.doi.org/10.1038/nnano.2008.200
82.
82. R. R. Nair et al., Appl. Phys. Lett. 97, 153102 (2010).
http://dx.doi.org/10.1063/1.3492845
83.
83. A. Cerf, T. Alava, R. A. Barton, and H. G. Craighead, “Transfer-printing of single DNA molecule arrays on graphene for high resolution electron imaging and analysis.”
84.
84. Y. Cui, S. N. Kim, S. E. Jones, L. L. Wissler, R. R. Naik, and M. C. McAlpine, Nano Lett. 10, 4559 (2010).
http://dx.doi.org/10.1021/nl102564d
85.
85. P. S. Waggoner and H. G. Craighead, Lab Chip 7, 1238 (2007).
http://dx.doi.org/10.1039/b707401h
86.
86. J. Atalaya, J. M. Kinaret, and A. Isacsson, EPL 91, 48001 (2010).
http://dx.doi.org/10.1209/0295-5075/91/48001
87.
87. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, Nat. Phys. 5, 909 (2009).
http://dx.doi.org/10.1038/nphys1425
88.
88. A. D. O’Connell et al., Nature (London) 464, 697 (2010).
http://dx.doi.org/10.1038/nature08967
89.
89. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, Nature (London) 463, 72 (2010).
http://dx.doi.org/10.1038/nature08681
90.
90. J. T. Robinson et al., Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
91.
91. R. R. Nair et al., Small 6, 2877 (2010).
http://dx.doi.org/10.1002/smll.201001555
92.
92. J. C. Sankey, C. Yang, B. M. Zwickl, M. Jayich, and J. G. E. Harris, Nat. Phys. 6, 707 (2010).
http://dx.doi.org/10.1038/nphys1707
93.
93. C. Lee, Q. Y. Li, W. Kalb, X. Z. Liu, H. Berger, R. W. Carpick, and J. Hone, Science 328, 76 (2010).
http://dx.doi.org/10.1126/science.1184167
94.
94. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
95.
95. S. Sengupta, H. S. Solanki, V. Singh, S. Dhara, and M. M. Deshmukh, Phys. Rev. B 82, 155432 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155432
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/29/5/10.1116/1.3623419
Loading
/content/avs/journal/jvstb/29/5/10.1116/1.3623419
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/29/5/10.1116/1.3623419
2011-09-09
2016-07-26

Abstract

As a result of the recent progress in fabricating large-area graphene sheets, graphene-based mechanical devices have become vastly easier to manufacture and now show even greater promise for a range of applications. This article reviews the progress of resonant graphenenanoelectromechanical systems and the possible applications of this technology to signal processing, sensing, and other areas. After discussing recent advances in fabrication and measurement techniques that make grapheneresonators a viable technology, the article presents what is known about the performance of graphene mechanical systems. The authors also highlight unresolved questions, such as the source of the dissipation in grapheneresonators, and discuss the progress made on these issues to date. The authors conclude with a discussion of important future directions for graphene research and the applications for which graphene nanomechanical devices may be well suited.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/29/5/1.3623419.html;jsessionid=FkZiGWZ7DRZhFM7cdv1lDRwF.x-aip-live-02?itemId=/content/avs/journal/jvstb/29/5/10.1116/1.3623419&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/29/5/10.1116/1.3623419&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/29/5/10.1116/1.3623419'
Right1,Right2,Right3,