1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Recent developments and design challenges in continuous roller micro- and nanoimprinting
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvstb/30/1/10.1116/1.3661355
1.
1. C. C. Lu, H. L. Yuo, C. Y. Lin, and J. Hou, Flexible Electronics and Displays Conference and Exhibition, 2008, Phoenix, AZ, 21–24 January 2008 (IEEE, New York, 2008), pp. 13.
2.
2. P. Oittinen, Papermaking Science and Technology, edited by P. Oittinen and H. Saarelma (Fapet Oy, Helsinki, 1998), Chaps. 4–6.
3.
3. D. Lawrence, J. Kohler, B. Brollier, T. Claypole and T. Burgin, Printed Organic and Molecular Electronics, edited by D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang (Kluwer, New York, 2004), Chap. 3.
4.
4. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85 (1996).
http://dx.doi.org/10.1126/science.272.5258.85
5.
5. Y. J. Juang, L. J. Lee, and K. W. Koelling, Polym. Eng. Sci. 42, 539 (2002).
http://dx.doi.org/10.1002/pen.v42:3
6.
6. Y. J. Juang, L. J. Lee, and K. W. Koelling, Polym. Eng. Sci. 42, 551 (2002).
http://dx.doi.org/10.1002/pen.v42:3
7.
7. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. G. Ederdt, and C. G. Willson, Proc. SPIE 3676, pp. 379390.
http://dx.doi.org/10.1117/12.351155
8.
8. L. J. Guo, J. Phys. D: Appl. Phys. 37, R123 (2004).
http://dx.doi.org/10.1088/0022-3727/37/11/R01
9.
9. Q. F Xia, J. J. S. Yang, W. Wu, X. M. Li, and R. S. Williams, Nano Lett. 10, 2909 (2010).
http://dx.doi.org/10.1021/nl1017157
10.
10. C. F. Shih, K. T. Hung, J. W. Wu, C. Y. Hsiao, and W. M. Li, Appl. Phys. Lett. 94, 143505 (2009).
http://dx.doi.org/10.1063/1.3117226
11.
11. M. Schvartzman, K. Nguyen, M. Palma, J. Abramson, J. Sable, J. Hone, M. P. Sheetz, and S. J. Wind, J. Vac. Sci. Technol. B. 27, 61 (2009).
http://dx.doi.org/10.1116/1.3043472
12.
12. J. S. Sohn, D. Lee, E. Cho, H. S. Kim, B. K. Lee, M. B. Lee, and S. J. Suh, Nanotechnology 20, 025302 (2009).
http://dx.doi.org/10.1088/0957-4484/20/2/025302
13.
13. R. A. Bartolini, N. Feldstein, and R. J. Ryan, J. Electrochem. Soc. 120, 1408 (1973).
http://dx.doi.org/10.1149/1.2403271
14.
14. R. E. Dunning, U.S. Patent No. 3,953,635 (27 April 1976).
15.
15. S. W. Youn, M. Ogiwara, H. Goto, M. Takahashi, and R. Maeda, J. Mater. Process. Technol. 202, 76 (2008).
http://dx.doi.org/10.1016/j.jmatprotec.2007.08.069
16.
16. D. Suh, S. J. Choi, and H. H. Lee, Adv. Mater. 17, 1554 (2005).
http://dx.doi.org/10.1002/adma.v17:12
17.
17. S. Seo, T. Kim, and H. H. Lee, Microelectron. Eng. 84, 567 (2007).
http://dx.doi.org/10.1016/j.mee.2006.11.008
18.
18. P. C. Kao, S. Y. Chu, C. Y. Zhan, L. C. Hsu, and W. C. Liao, J. Vac. Sci. Technol. B. 24, 1278 (2006).
http://dx.doi.org/10.1116/1.2190661
19.
19. C. H. Chen, Y. C. Lee, C. D. Chen, S. J. Lai and S. J. Liaw, Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, Sanya, China, 6–9 January 2008 (IEEE, New York, 2008), pp. 877880.
20.
20. F. G. Smith, U.S. Patent No. 4,159,677 (3 July 1979).
21.
21. R. E. Dunning and M. A. Nelson, U.S. Patent No. 4,110,152 (29 Aug 1978).
22.
22. H. Tan, A. Gilbertson, and S. Y. Chou, J. Vac. Sci. Technol. B. 16, 3926 (1998).
http://dx.doi.org/10.1116/1.590438
23.
23. H. J. Kim, M. Almanza-Workman, A. Chaiken, W. Jackson, A. Jeans, O. Kwon, H. Luo, P. Mei, C. Perlov, C. Taussig, F. Jeffrey, S. Braymen, and J. Hauschildt, IMID/IDMC 2006: The 6th International Meeting On Information Display/The 5th International Display Manufacturing Conference, Digest of Technical Papers, Daegu, South Korea, 22–25 August (Korean Information Display Society, Seoul, 2006) pp. 15391543.
24.
24. S. Ahn, J. Cha, H. Myung, S. Kim, and S. Kang, Appl. Phys. Lett. 89, 213101 (2006).
http://dx.doi.org/10.1063/1.2392960
25.
25. C. Y. Chang, S. Y. Yang, and J. L. Sheh, Microsyst. Technol. 12, 754 (2006).
http://dx.doi.org/10.1007/s00542-006-0103-5
26.
26. D. Truffier-Boutry, M. Zelsmann, J. De Girolamo, J. Boussey, C. Lombard, and B. Pépin-Donat, Appl. Phys. Lett. 94, 044110 (2009).
http://dx.doi.org/10.1063/1.3077172
27.
27. A. Gregg, L. York, and M. Strnad, Flexible Flat Panel Displays, edited by G. P. Crawford (Wiley, New York, 2005), pp. 419420.
28.
28. B. R. Munson, D. F. Young and T. H. Okiishi, Fundamentals of Fluid Mechanics, 4th ed. (Wiley, New York, 2002), pp. 322323.
29.
29. M. D. Fagan, B. H. Kim, and D. Yao, Adv. Polym. Technol. 28, 246 (2009).
http://dx.doi.org/10.1002/adv.20167
30.
30. R. B. Bird, R. C. Armstrong and O. Hassager, Fluid Mechanics, Dynamics of Polymeric Liquids, edited by R. B. Bird and O. Hassager (Wiley, New York, 1987), Vol. 1, pp. 2022.
31.
31. L. J. Heyderman, H. Schift, C. David, J. Gobrecht, and T. Schweizer, Microelectron. Eng. 54, 229 (2000).
http://dx.doi.org/10.1016/S0167-9317(00)00414-7
32.
32. S. Y. Yang and J. D. Luo, Proceedings of Asia/Australia Regional Meeting of Polymer Processing Society, Taipei, Taiwan, 4–8 November 2002 (Polymer Processing Society, Akron, Ohio, 2002), Vol. 18.
33.
33. C. M. Lu, Y. J. Juang, L. J. Lee, D. Grewell, and A. Benatar, Polym. Eng. Sci. 45, 661 (2005).
http://dx.doi.org/10.1002/pen.v45:5
34.
34. D. G. Yao, P. Nagarajan, L. Li, and A. Yi, Polym. Eng. Sci., 47, 530 (2007).
http://dx.doi.org/10.1002/pen.v47:4
35.
35. L. T. Jiang, T. C. Huang, C. R. Chiu, C. Y. Chang, and S. Y. Yang, Opt. Express 15, 12088 (2007).
http://dx.doi.org/10.1364/OE.15.012088
36.
36. T. Mäkelä, T. Haatainen, P. Majander, J. Ahopelto, and V. Lambertini, Jpn. J. Appl. Phys. 47, 5142 (2008).
http://dx.doi.org/10.1143/JJAP.47.5142
37.
37. T. Ohta, M. Hennesey, D. Strand, D. Jablonsky, B. Walton and B. Clark, IEEE Trans. Magn. 43, 836 (2007).
http://dx.doi.org/10.1109/TMAG.2006.888451
38.
38. T. Velten, H. Schuck, W. Haberer, and F. Bauerfeld, Int. J. Adv. Manuf. Technol. 47, 73 (2010).
http://dx.doi.org/10.1007/s00170-009-1975-1
39.
39. S. H. Ng and Z. F. Wang, Microsyst. Technol. 15, 1149 (2009).
http://dx.doi.org/10.1007/s00542-008-0722-0
40.
40. L. P. Yeo, S. H. Ng, Z. Wang, Z. Wang, and N. F. de Rooij, Microelectron. Eng. 86, 933 (2009).
http://dx.doi.org/10.1016/j.mee.2008.12.021
41.
41. L. P. Yeo, S. H. Ng, Z. F. Wang, H. M. Xia, Z. P. Wang, V. S. Thang, Z. W. Zhong, and N. F. de Rooij, J. Micromech. Microeng. 20, 015017 (2010).
http://dx.doi.org/10.1088/0960-1317/20/1/015017
42.
42. H. Schift, M. Halbeisen, U. Schütz, B. Delahoche, K. Vogelsang, and J. Gobrecht, Microelectron. Eng. 83, 855 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.120
43.
43. T. Mäkelä, T. Haatainen, P. Majander, J. Ahopelto, and V. Lambertini, Microelectron. Eng. 84, 877 (2007).
http://dx.doi.org/10.1016/j.mee.2007.01.131
44.
44. E. Mele, F. Di Benedetto, L. Persano, R. Cingolani, and D. Pisignano, Nano Lett. 5, 1915 (2005).
http://dx.doi.org/10.1021/nl051234p
45.
45. D. Pisignano, A. Melcarne, D. Mangiullo, R. Cingolani, and G. Gigli, J. Vac. Sci. Technol. B. 22, 185 (2004).
http://dx.doi.org/10.1116/1.1641056
46.
46. N. Ishizawa, K. Idei, T. Kimura, D. Noda, and T. Hattori, Microsyst. Technol. 14, 1381 (2008).
http://dx.doi.org/10.1007/s00542-007-0552-5
47.
47. K. Nagato, S. Sugimoto, T. Hamaguchi, and M. Nakao, Microelectron. Eng. 87, 1543 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.029
48.
48. X. Cheng and L. Jay Guo, Microelectron. Eng. 71, 277 (2004).
http://dx.doi.org/10.1016/j.mee.2004.01.041
49.
49. W. C. Liao and S. L. Hsu, J. Vac. Sci. Technol. B. 22, 2764 (2004).
http://dx.doi.org/10.1116/1.1824044
50.
50. K. D. Kim, J. H. Jeong, Y. S. Sim and E. S. Lee, Microelectron. Eng. 83, 847 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.037
51.
51. J. J. Lee, S. Y. Park, K. B. Choi, and G. H. Kim, Microelectron. Eng. 85, 861 (2008).
http://dx.doi.org/10.1016/j.mee.2007.12.059
52.
52. J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, J. Phys. D: Appl. Phys. 42, 115503 (2009).
http://dx.doi.org/10.1088/0022-3727/42/11/115503
53.
53. C. J. Ting, F. Y. Chang, C. F. Chen, and C. P. Chou, J. Micromech. Microeng. 18, 075001 (2008).
http://dx.doi.org/10.1088/0960-1317/18/7/075001
54.
54. W. B. Jackson, M. Almanza-Workman, A. Chaiken, R. A. Garcia, A. Jeans, O. Kwon, H. Luo, P. Mei, C. Perlov, C. Taussig, S. Braymen, F. Jeffrey, and J. Hauschildt, 2008 SID International Symposium, Digest of Technical Papers, Los Angeles, CA, 18–23 May 2008 (SID, Campbell, CA, 2007), Vol. 39, Books I-III, p. 322.
55.
55. S. H. Ahn, J. S. Kim, and L. J. Guo, J. Vac. Sci. Technol. B. 25, 2388 (2007).
http://dx.doi.org/10.1116/1.2798747
56.
56. S. Ahn, M. Choi, H. Bae, J. Lim, H. Myung, H. Kim, and S. Kang, Jpn. J. Appl. Phys. 46, 5478 (2007).
http://dx.doi.org/10.1143/JJAP.46.5478
57.
57. C. Y. Chang, S. Y. Yang, and M. H. Chu, Microelectron. Eng. 84, 355 (2007).
http://dx.doi.org/10.1016/j.mee.2006.11.004
58.
58. S. Y. Yang, F. S. Cheng, S. W. Xu, P. H. Huang, and T. C. Huang, Microelectron. Eng. 85, 603 (2008).
http://dx.doi.org/10.1016/j.mee.2007.11.004
59.
59. S. J. Liu and Y. C. Chang, J. Micromech. Microeng. 17, 172 (2007).
http://dx.doi.org/10.1088/0960-1317/17/1/022
60.
60. S. H. Ahn and L. J. Guo, Adv. Mater. 20, 2044 (2008).
http://dx.doi.org/10.1002/adma.v20:11
61.
61. S. H. Ahn and L. J. Guo, ACS Nano 3, 2304 (2009).
http://dx.doi.org/10.1021/nn9003633
62.
62. D. R. Barbero, M.S.M. Saifullah, P. Hoffman, H. J. Mathieu, D. Anderson, G.A.C. Jones, M. E. Welland, and U. Steiner, Adv. Funct. Mater. 17, 2419 (2007).
http://dx.doi.org/10.1002/adfm.v17:14
63.
63. W. H. Heath, F. Palmieri, J. R. Adams, B. K. Long, J. Chute, T. W. Holcombe, S. Zieren, M. J. Truitt, J. L. White, and C. G. Willson, Macromolecules 41, 719 (2008).
http://dx.doi.org/10.1021/ma702291k
64.
64. O. Nezuka, D. Yao and B. H. Kim, Polym.-Plast. Technol. Eng. 47, 865 (2008).
http://dx.doi.org/10.1080/03602550802189001
65.
65. S. C. Johnson, T. C. Bailey, M. D. Dickey, B. J. Smith, E. K. Kim and A. T. Jamieson, Proc. SPIE 5037, 197 (2003).
http://dx.doi.org/10.1117/12.484985
66.
66. I. M. Mcmackin, N. A. Stacey, D. A. Babbs, D. J. Voth, M. P. C Watts, V. N. Truskett, F. Y. Xu, R. D. Voisin, and P. B. Lad, U.S. Patent No. 7,090,716 (15 August 2006).
67.
67. H. Hiroshima and M. Komuro, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers (Institute of Pure and Applied Physics, Tokyo, 2007), pp. 63916394.
68.
68. H. Hiroshima, Jpn. J. Appl. Phys. 47, 5151 (2008).
http://dx.doi.org/10.1143/JJAP.47.5151
69.
69. H. Hiroshima, H. Atobe, Q. Wang, and S. W. Youn, Jpn J. Appl. Phys. 49, 06GL01 (2010).
http://dx.doi.org/10.1143/JJAP.49.06GL01
70.
70. C. Auner, U. Palfinger, H. Gold, J. Kraxner, A. Haase, T. Haber, M. Sezen, W. Grogger, G. Jakopic, J. R. Krenn, G. Leising, and B. Stadlober, Org. Electron. 11, 552 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.012
71.
71. S. H. Lim, M.S.M. Saifullah, H. Hussain, W. W. Loh, and H. Y. Low, Nanotechnology. 21, 285303 (2010).
http://dx.doi.org/10.1088/0957-4484/21/28/285303
72.
72. T. L. Chang, J. C. Wang, C. C. Chen, Y. W. Lee, and T. H. Chou, Microelectron. Eng. 85, 1608 (2008).
http://dx.doi.org/10.1016/j.mee.2008.03.011
73.
73. A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. M. Haghiri-Gosnet, Microelectron. Eng. 87, 1015 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.106
74.
74. T. H. Chou, K. Y. Cheng, C. C. Su, T. L. Chang, C. W. Hsieh and J. H. Tsai, J. Soc. Precis. Eng. 11, 619 (2010).
http://dx.doi.org/10.1007/s12541-010-0072-6
75.
75. H. S. Zheng, Y. Zhao, B. X. Wu, C. Taylor, R. L. Jacobsen and Y. B. Gao, Proc. of the ASME International Manufacturing Science and Engineering Conference, West Lafayette, Indiana, 4–7 October 2009 (ASME, New York, 2009), Vol. 2, pp. 631635.
76.
76. Y. Takashi, N. Kazuyuki, and M. Hideki, Appl. Phys. Express 2, 022001 (2009).
http://dx.doi.org/10.1143/APEX.2.022001
77.
77. S. H. Hong, B. J. Bae, H. Lee, and J. H. Jeong, Microelectron. Eng. 87, 2081 (2010).
http://dx.doi.org/10.1016/j.mee.2010.01.001
78.
78. Y. Takashi, N. Kazuyuki and M. Hideki, Jpn. J. Appl. Phys., Part 2 45, L804 (2006).
http://dx.doi.org/10.1143/JJAP.45.L804
79.
79. J. Choi, Y. B. Park, and A. Scherer, Nanotechnology 16, 1655 (2005).
http://dx.doi.org/10.1088/0957-4484/16/9/042
80.
80. H. J. Park, M. G. Kang, and L. J. Guo, ACS Nano 3, 2601 (2009).
http://dx.doi.org/10.1021/nn900701p
81.
81. S. Park, D. H. Lee, and T. P. Russell, Adv. Mater. 22, 1882 (2010).
http://dx.doi.org/10.1002/adma.200902722
82.
82. W. Wang, X. Mei, and G. Jiang, Int. J. Adv. Manuf. Technol. 41, 504 (2009).
http://dx.doi.org/10.1007/s00170-008-1490-9
83.
83. K. Idei, N. Ishizawa, D. Noda and T. Hattori, 2006 IEEE International Symposium on Micro- NanoMechatronics and Human Science, Nagoya, Japan, 5–8 November 2006 (IEEE, New York, 2006), pp. 276281.
84.
84. K. Ansari, J. A. van Kan, A. A. Bettiol, and F. Watt, J. Micromech. Microeng. 16, 1967 (2006).
http://dx.doi.org/10.1088/0960-1317/16/10/008
85.
85. E. S. Hwang, J. W. Park, J. G. Kim, Y. Cho, K. M. Yeo, J. W. Seo, H. Kim, and S. Lee, Jpn. J. Appl. Phys. 48, 050211 (2009).
http://dx.doi.org/10.1143/JJAP.48.050211
86.
86. M. Bender, U. Plachetka, J. Ran, A. Fuchs, B. Vratzov, H. Kurz, T. Glinsner, and F. Lindner, J. Vac. Sci. Technol. B. 22, 3229 (2004).
http://dx.doi.org/10.1116/1.1824057
87.
87. D. Y. Khang, H. Kang, T. I. Kim, and H. H. Lee, Nano Lett. 4, 633 (2004).
http://dx.doi.org/10.1021/nl049887d
88.
88. S. J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, and H. H. Lee, J. Am. Chem. Soc. 126, 7744 (2004).
http://dx.doi.org/10.1021/ja048972k
89.
89. S. J. Choi, D. Tahk, and H. Yoon, J. Colloid Interface Sci. 74, 340 (2009).
90.
90. F. Y. Li, L. Zhang and R. M. Metzger, Chem Mater. 10, 2470 (1998).
http://dx.doi.org/10.1021/cm980163a
91.
91. A. J. Kinloch, Adhesion and Adhesives: Science and Technology (Chapman and Hall, London, 1987), p. 33.
92.
92. E. Huang, L. Rockford, T. P. Russell, and C. J. Hawker, Nature 395, 757 (1998).
http://dx.doi.org/10.1038/27358
93.
93. T. C. Huang, J. T. Wu, S. Y. Yang, P. H. Huang, and S. H. Chang, Microelectron. Eng. 86, 615 (2009).
http://dx.doi.org/10.1016/j.mee.2009.01.008
94.
94. L. T. Jiang, T. C. Huang, C. Y. Chang, J. R. Ciou, S. Y. Yang, and P. H. Huang, J. Micromech. Microeng. 18, 015004 (2008).
http://dx.doi.org/10.1088/0960-1317/18/1/015004
95.
95. J. Taniguchi and M. Aratani, J. Vac. Sci. Technol. B. 27, 2841 (2009).
http://dx.doi.org/10.1116/1.3237141
96.
96. J. Uh, J. S. Lee, Y. H. Kim, J. T. Choi, M. G. Joo and C. S. Lim, ISIJ Int. 42, 1266 (2002).
http://dx.doi.org/10.2355/isijinternational.42.1266
97.
97. S. Y. Yang, T. C. Huang, J. T. Wu, H. C. Lai and Y. T. Chu, U.S. Patent Application No. 20110132768 (9 June 2011).
98.
98. S. Y. Hwang, S. H. Hong, H. Y. Jung, and H. Lee, Microelectron. Eng. 86, 642 (2009).
http://dx.doi.org/10.1016/j.mee.2008.11.055
99.
99. S. Garidel, M. Zelsmann, P. Voisin, N. Rochat and P. Michallon, Proc, SPIE, 6517, C5172.
100.
100. M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, Appl. Phys. Lett. 84, 5299 (2004).
http://dx.doi.org/10.1063/1.1766071
101.
101. M. D. Dickey, R. L. Burns, E. K. Kim, S. C. Johnson, N. A. Stacey, and C. G. Willson, AIChE J. 51, 2547 (2005).
http://dx.doi.org/10.1002/aic.v51:9
102.
102. J. Weixlberger, J. van Eekelen and M. Verschuuren, NSTI Nanotech Technical Proceedings (Taylor & Francis, London, 2008), Vol. 1, pp. 556558.
103.
103. S. Y. Park, K. B. Choi, G. H. Kim, and J. J. Lee, Microelectron. Eng. 86, 604 (2009).
http://dx.doi.org/10.1016/j.mee.2008.12.074
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/30/1/10.1116/1.3661355
Loading
/content/avs/journal/jvstb/30/1/10.1116/1.3661355
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/30/1/10.1116/1.3661355
2011-12-01
2015-07-31

Abstract

As an emerging technology for the manufacture of micro- and nano-scale patterns, continuous imprinting; otherwise known as roll-to-roll or roller imprinting, is attracting interest from researchers around the world because of its inherent advantages of low cost, high throughput, large area patterning. This technology is an evolutionary advance on the more traditional nanoimprint lithography developed in the 1990s, which is considered a batch mode, or dis-continuous patterning approach. In recent years, a number of commercial applications have been discovered which require low cost, large area patterning, particularly displays, optical coatings and films, and biological applications such as anti-fouling surfaces and micro-fluidic devices. This review covers a variety of continuous imprinting approaches, highlights challenges, and surveys progress towards high speed production of micro- and nanoscale features for these applications and others using this platform technology.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/30/1/1.3661355.html;jsessionid=1vumorol4n2j5.x-aip-live-06?itemId=/content/avs/journal/jvstb/30/1/10.1116/1.3661355&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Recent developments and design challenges in continuous roller micro- and nanoimprinting
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/30/1/10.1116/1.3661355
10.1116/1.3661355
SEARCH_EXPAND_ITEM