Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/30/3/10.1116/1.3693416
1.
1. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
2.
2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 16602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.016602
3.
3. E. H. Hwang, S. Adam, and S. D. Sarma, Phys. Rev. Lett. 98, 186806 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.186806
4.
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
5.
5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
6.
6. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
7.
7. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
8.
8. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
9.
9. K. A. Jenkins, Y. M. Lin, D. Farmer, C. Dimitrakopoulos, H. Y. Chiu, A. Valdes-Garcia, P. Avouris, and A. Grill, in Graphene RF Transistor Performance (ECS Transactions, Vancouver, BC, 2010), pp. 313.
10.
10. Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, Science 327, 662 (2010).
http://dx.doi.org/10.1126/science.1184289
11.
11. D. B. Farmer, H. Y. Chiu, Y. M. Lin, K. A. Jenkins, F. Xia, and P. Avouris, Nano Lett. 9, 4474 (2009).
http://dx.doi.org/10.1021/nl902788u
12.
12. J. S. Moon et al., IEEE Electron Device Lett. 30, 650652 (2009).
http://dx.doi.org/10.1109/LED.2009.2020699
13.
13. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
14.
14. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).
http://dx.doi.org/10.1038/nmat1967
15.
15. K. S. Kim et al., Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
16.
16. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
17.
17. Y. M. Lin, K. A. Jenkins, V. G. Alberto, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009).
http://dx.doi.org/10.1021/nl803316h
18.
18. C. Berger et al., Science 312, 1191 (2006).
http://dx.doi.org/10.1126/science.1125925
19.
19. T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
http://dx.doi.org/10.1016/S0920-2307(89)80006-4
20.
20. S. M. George, A. W. Ott, and J. W. Klaus, J. Phys. Chem. 100, 13121 (1996).
http://dx.doi.org/10.1021/jp9536763
21.
21. R. L. Puurunen, J. Appl. Phys. 97, 1 (2005).
22.
22. R. S. Shishir and D. K. Ferry, J. Phys. Condens. Matter 21, 232204 (2009).
http://dx.doi.org/10.1088/0953-8984/21/23/232204
23.
23. A. Konar, T. A. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115452
24.
24. Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. M. Hu, IEEE Electron Device Lett. 19, 341 (1998).
25.
25. B. K. Lee, S. Y. Park, H. C. Kim, K. Cho, E. M. Vogel, M. J. Kim, R. M. Wallace, and J. Y. Kim, Appl. Phys. Lett. 92, 203102 (2008).
http://dx.doi.org/10.1063/1.2928228
26.
26. F. Speck, M. Ostler, J. Rohrl, K. V. Emtsev, M. Hundhausen, L. Ley, and T. Seyller, Phys. Status Solidi C 7, 398 (2010).
http://dx.doi.org/10.1002/pssc.200982496
27.
27. Y. Xuan, Y. Q. Wu, T. Shen, M. Qi, M. A. Capano, J. A. Cooper, and P. D. Ye, Appl. Phys. Lett. 92, 013101 (2008).
http://dx.doi.org/10.1063/1.2828338
28.
28. B. Lee et al., in Graphene and Emerging Materials for Post-CMOS Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan, D. Misra, H. Iwai, Z. Karim, D. W. Hess, and H. Grebel (ECS Transactions, San Francisco, 2009), Vol. 19, pp. 225230.
29.
29. D. B. Farmer and R. G. Gordon, Nano Lett. 6, 699 (2006).
http://dx.doi.org/10.1021/nl052453d
30.
30. A. Pirkle, R. M. Wallace, and L. Colombo, Appl. Phys. Lett. 95, 133106 (2009).
http://dx.doi.org/10.1063/1.3238560
31.
31. J. A. Robinson et al., ACS Nano 4, 2667 (2010).
http://dx.doi.org/10.1021/nn1003138
32.
32. C. Dimitrakopoulos et al., J. Vac. Sci. Technol. B 28, 985 (2010).
http://dx.doi.org/10.1116/1.3480961
33.
33. N. Y. Garces, V. D. Wheeler, J. K. Hite, G. G. Jernigan, J. L. Tedesco, N. Nepal, C. R. Eddy, Jr., and D. K. Gaskill, J. Appl. Phys. 109, 124304 (2011).
http://dx.doi.org/10.1063/1.3596761
34.
34. M. J. Hollander et al., Nano Lett. 11, 3601 (2011).
http://dx.doi.org/10.1021/nl201358y
35.
35. D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035427
36.
36. R. R. Nair et al., Small 6, 2877 (2010).
http://dx.doi.org/10.1002/smll.201001555
37.
37. J. T. Robinson et al., Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
38.
38. H. Sahin, C. Ataca, and S. Ciraci, Phys. Rev. B 81, 205417 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205417
39.
39. H. Sahin, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 95, 222510 (2009).
http://dx.doi.org/10.1063/1.3268792
40.
40. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.153401
41.
41. M. Topsakal, S. Cahangirov, and S. Ciraci, Appl. Phys. Lett. 96, 091912 (2010).
http://dx.doi.org/10.1063/1.3353968
42.
42. M. Baraket, S. G. Walton, E. H. Lock, J. T. Robinson, and F. K. Perkins, Appl. Phys. Lett. 96, 231501 (2010).
http://dx.doi.org/10.1063/1.3436556
43.
43. V. D. Wheeler, N. Y. Garces, L. O. Nyakiti, R. L. Myers-Ward, G. G. Jernigan, J. Culbertson, C. R. E. Jr., and D. K. Gaskill, Carbon 50, 2307 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.01.050
44.
44. L. Liao and X. Duan, Mater. Sci. Eng. R 70, 354 (2010).
http://dx.doi.org/10.1016/j.mser.2010.07.003
45.
45. L. Liao, J. Bai, Y. Qu, Y. C. Lin, Y. Li, Y. Huang, and X. Duan, Proc. Natl. Acad. Sci. U.S.A. 107, 6711 (2010).
http://dx.doi.org/10.1073/pnas.0914117107
46.
46. X. R. Wang, S. M. Tabakman, and H. J. Dai, J. Am. Chem. Soc. 130, 8152 (2008).
http://dx.doi.org/10.1021/ja8023059
47.
47. F. H. Yang and R. T. Yang, Carbon 40, 437 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00199-3
48.
48. K. Zou, X. Hong, D. Keefer, and J. Zhu, Phys. Rev. Lett. 105, 126601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.126601
49.
49. K. P. Loh, Q. L. Bao, P. K. Ang, and J. X. Yang, J. Mater. Chem. 20, 2277 (2010).
http://dx.doi.org/10.1039/b920539j
50.
50. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R02
51.
51. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nat. Nanotechnol. 3, 654 (2008).
http://dx.doi.org/10.1038/nnano.2008.268
52.
52. S. Sato, K. Yagi, D. Kondo, K. Hayashi, A. Yamada, N. Harada, and N. Yokoyama, ECS Trans. 35, 219 (2011).
53.
53. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).
http://dx.doi.org/10.1021/nl070613a
54.
54. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
http://dx.doi.org/10.1021/jp040650f
55.
55. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nat. Mater. 8, 203 (2009).
http://dx.doi.org/10.1038/nmat2382
56.
56. B. L. VanMil, R. L. Myers-Ward, J. L. Tedesco, C. R. Eddy, G. G. Jernigan, J. C. Culbertson, P. M. Campbell, J. M. McCrate, S. A. Kitt, and D. K. Gaskill, Silicon Carbide Relat. Mater. 615–617, 211 (2009).
57.
57. G. G. Jernigan, V. D. Wheeler, and N. Y. Garces (unpublished).
58.
58. J. S. Moon et al., in Development Toward Wafer-Scale Graphene RF Electronics (ECS Transactions, San Francisco, CA, 2009), pp. 3540.
59.
59. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, Nature 430, 870 (2004).
http://dx.doi.org/10.1038/nature02817
60.
60. G. Brauchle, S. Richardschneider, D. Illig, J. Rockenberger, R. D. Beck, and M. M. Kappes, Appl. Phys. Lett. 67, 52 (1995).
http://dx.doi.org/10.1063/1.115490
61.
61. B. Lee et al., ECS Trans. 19, 225 (2009).
62.
62. J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007).
http://dx.doi.org/10.1126/science.1144657
63.
63. A. Pirkle, S. McDonnell, B. Lee, J. Kim, L. Colombo, and R. M. Wallace, Appl. Phys. Lett. 97, 082901 (2010).
http://dx.doi.org/10.1063/1.3479908
64.
64. F. M. Koehler, N. A. Luechinger, D. Ziegler, E. K. Athanassiou, R. N. Grass, A. Rossi, C. Hierold, A. Stemmer, and W. J. Stark, Angew. Chem. Int. Ed. 48, 224 (2009).
65.
65. S. K. Kim, S. W. Lee, C. S. Hwang, Y. S. Min, J. Y. Won, and J. Jeong, J. Electrochem. Soc. 153, F69 (2006).
http://dx.doi.org/10.1149/1.2177047
66.
66. P. Majumder, G. Jursich, A. Kueltzo, and C. Takoudis, J. Electrochem. Soc. 155, G152 (2008).
http://dx.doi.org/10.1149/1.2929825
67.
67. H. S. Chang, S. K. Baek, H. Park, H. Hwang, J. H. Oh, W. S. Shin, J. H. Yeo, K. H. Hwang, S. W. Nam, H. D. Lee, C. L. Song, D. W. Moon, and M. H. Cho, Electrochem. Solid State Lett. 7, F42 (2004).
http://dx.doi.org/10.1149/1.1707031
68.
68. B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, and J. Kim, Appl. Phys. Lett. 97, 043107 (2010).
http://dx.doi.org/10.1063/1.3467454
69.
69. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Appl. Phys. Lett. 94, 062107 (2009).
http://dx.doi.org/10.1063/1.3077021
70.
70. J. H. Chen, C. Jang, S. D. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
http://dx.doi.org/10.1038/nnano.2008.58
71.
71. C. Dimitrakopoulos et al., J. Vac. Sci. Technol. B 28, 985 (2010).
http://dx.doi.org/10.1116/1.3480961
72.
72. L. Yu-Ming et al., IEEE Electron Device Lett. 32, 1343 (2011).
73.
73. O. M. Nayfeh, T. Marr, and M. Dubey, IEEE Electron Device Lett. 32, 473 (2011).
http://dx.doi.org/10.1109/LED.2011.2108258
74.
74. L. Geunsik, L. Bongki, K. Jiyoung, and C. Kyeongjae, J. Phys. Chem. C 113, 14225 (2009).
http://dx.doi.org/10.1021/jp904321n
75.
75. S. T. Jackson and R. G. Nuzzo, Appl. Surf. Sci. 90, 195 (1995).
http://dx.doi.org/10.1016/0169-4332(95)00079-8
76.
76. G. Beamson, D. T. Clark, and D. S. L. Law, Surf. Interface Anal. 27, 76 (1999).
http://dx.doi.org/10.1002/(SICI)1096-9918(199902)27:2<76::AID-SIA470>3.0.CO;2-R
77.
77. D. Briggs and G. Beamson, Anal. Chem. 64, 1729 (1992).
http://dx.doi.org/10.1021/ac00039a018
78.
78. P. Stone, S. Poulston, R. A. Bennett, N. J. Price, and M. Bowker, Surf. Sci. 418, 71 (1998).
http://dx.doi.org/10.1016/S0039-6028(98)00683-9
79.
79. O. Renault, L. G. Gosset, D. Rouchon, and A. Ermolieff, J. Vac. Sci. Technol. A 20, 1867 (2002).
http://dx.doi.org/10.1116/1.1507330
80.
80. M. R. Alexander, G. E. Thompson, and G. Beamson, Surf. Interface Anal. 29, 468 (2000).
http://dx.doi.org/10.1002/1096-9918(200007)29:7<468::AID-SIA890>3.0.CO;2-V
81.
81. Y. M. Shulga, T.-C. Tien, C.-C. Huang, S.-C. Lo, V. E. Muradyan, N. V. Polyakova, Y.-C. Ling, R. O. Loutfy, and A. P. Moravsky, J. Electron Spectrosc. Relat. Phenom. 160, 22 (2007).
http://dx.doi.org/10.1016/j.elspec.2007.06.002
82.
82. H. Sahin, M. Topsakal, and S. Ciraci, Phys. Rev. B 83, 115432 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115432
83.
83. J. O. Sofo, A. M. Suarez, G. Usaj, P. S. Cornaglia, A. D. Hernandez-Nieves, and C. A. Balseiro, Phys. Rev. B 83, 081411R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081411
84.
84. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
85.
85. Y. Lu, S. Bangsaruntip, X. Wang, L. Zhang, Y. Nishi, and H. Dai, J. Am. Chem. Soc. 128, 3518 (2006).
http://dx.doi.org/10.1021/ja058836v
86.
86. J. M. P. Alaboson, Q. H. Wang, J. D. Emery, A. L. Lipson, M. J. Bedzyk, J. W. Elam, M. J. Pellin, and M. C. Hersam, ACS Nano 5, 5223 (2011).
http://dx.doi.org/10.1021/nn201414d
87.
87. D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, Chem. Mater. 14, 4350 (2002).
http://dx.doi.org/10.1021/cm020357x
88.
88. D. K. Gaskill et al., Graphene and Emerging Materials for Post-CMOS Applications (ECS Transactions, San Francisco, 2009), Vol. 19, 117124.
89.
89. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
90.
90. R. Mahapatra, A. K. Chakraborty, N. Poolamai, A. Horsfall, S. Chattopadhyay, N. G. Wright, K. S. Coleman, P. G. Coleman, and C. P. Burrows, J. Vac. Sci. Technol. B 25, 217 (2007).
http://dx.doi.org/10.1116/1.2433976
91.
91. T. Shen, J. J. Gu, M. Xu, Y. Q. Wu, M. L. Bolen, M. A. Capano, L. W. Engel, and P. D. Ye, Appl. Phys. Lett. 95, 172105 (2009).
http://dx.doi.org/10.1063/1.3254329
92.
92. S. Kim and E. Tutuc, arXiv:cond-mat/0909.2288v1 (2009).
93.
93. D. B. Farmer, Y. M. Lin, and P. Avouris, Appl. Phys. Lett. 97, 013103 (2010).
http://dx.doi.org/10.1063/1.3459972
94.
94. A. Hsu, H. Wang, K. K. Kim, J. Kong, and T. Palacios, Jpn. J. Appl. Phys. 50, 070114 (2011).
http://dx.doi.org/10.1143/JJAP.50.070114
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/30/3/10.1116/1.3693416
Loading
/content/avs/journal/jvstb/30/3/10.1116/1.3693416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/30/3/10.1116/1.3693416
2012-03-19
2016-05-31

Abstract

Graphene has recently attracted wide-spread attention because of its unique transport and physical properties that are appealing for a wide range of electronic applications. Integration with scalable high-κ dielectrics is important for the realization of graphene-based top-gated electronic devices, including next generation THz applications. Atomic layer deposition(ALD), a low temperature deposition method based on two separate self-limiting surface reactions, is a preferred technique to achieve high-quality, conformal, ultrathin dielectric films with precise control of thickness and chemical composition at the atomic scale. Unfortunately, ALD of oxides on graphene is hindered by the inertness of the graphene surface. To alleviate this graphene-oxide incompatibility, several different functionalization and seeding methods have recently been developed to render the graphene more susceptible to the ALD process of high-κ dielectrics including: ozone, wet chemical and fluorine pretreatments, low-k polymer seed, e-beam metal, and oxide seed layers. The ability of each approach to enable conformal, uniform high-κ dielectrics on graphene while maintaining its inherent transport properties for low power, high-frequency device applications is discussed.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/30/3/1.3693416.html;jsessionid=POEaA4dwIJF62xqEu8d8NI6E.x-aip-live-06?itemId=/content/avs/journal/jvstb/30/3/10.1116/1.3693416&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/30/3/10.1116/1.3693416&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/30/3/10.1116/1.3693416'
Right1,Right2,Right3,