1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
PECVD growth of carbon nanotubes: From experiment to simulation
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvstb/30/3/10.1116/1.3702806
1.
1. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Spectrochim. Acta, Part B 57, 609 (2002).
http://dx.doi.org/10.1016/S0584-8547(01)00406-2
2.
2. A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE, New York, 1994).
3.
3. K. Ostrikov, Plasma Nanoscience (Wiley-VCH, Weinheim, 2008).
4.
4. B. Chapman, Glow Discharge Processes (Wiley, New York, 1980).
5.
5. T. Kato and R. Hatakeyama, Chem. Vap. Deposition 12, 345 (2006).
http://dx.doi.org/10.1002/cvde.200506451
6.
6. E. C. Neyts, A. C. T. van Duin, and A. Bogaerts, J. Am. Chem. Soc. 134, 1256 (2012).
http://dx.doi.org/10.1021/ja2096317
7.
7. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
8.
8. L. Delzeit, I. McAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan, J. Appl. Phys. 91, 6027 (2002).
http://dx.doi.org/10.1063/1.1465101
9.
9. K. Matthews, B. Cruden, B. Chen, M. Meyyappan, and L. Delzeit, J. Nanosci. Nanotechnol. 2, 475 (2002).
http://dx.doi.org/10.1166/jnn.2002.133
10.
10. S. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Phys. Plasmas 8, 2549 (2001).
http://dx.doi.org/10.1063/1.1343887
11.
11. T. Yuji and Y. M. Sung, IEEE Trans. Plasma Sci. 35, 1027 (2007).
http://dx.doi.org/10.1109/TPS.2007.896753
12.
12. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999).
http://dx.doi.org/10.1063/1.124128
13.
13. Y. C. Choi, Y. H. Lee, B. S. Lee, G. Park, W. B. Choi, N. S. Lee, and J. M. Kim, J. Vac. Sci. Technol. A 18, 1864 (2000).
http://dx.doi.org/10.1116/1.582437
14.
14. J. Y. Lee and B. S. Lee, Thin Solid Films 418, 85 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00788-5
15.
15. S. K. Srivastava, A. K. Shukla, V. D. Vankar, and V. Kumar, Thin Solid Films 492, 124 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.07.283
16.
16. A. Malesevic, H. Chen, T. Hauffman, A. Vanhulsel, H. Terryn, and C. Van Haesendonck, Nanotechnology 18, 455602 (2007).
http://dx.doi.org/10.1088/0957-4484/18/45/455602
17.
17. L. Qu, F. Du, and L. Dai, Nano Lett. 8, 2682 (2008).
http://dx.doi.org/10.1021/nl800967n
18.
18. E. J. Bae, Y.-S. Min, D. Kang, J.-H. Ko, and W. Part, Chem. Mater. 17, 5141 (2005).
http://dx.doi.org/10.1021/cm050889o
19.
19. T. Nozaki, S. Yoshida, T. Karatsu, and K. Okazaki, J. Phys. D: Appl. Phys. 44, 174007 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174007
20.
20. M. Meyyappan, J. Phys. D: Appl. Phys. 44, 174002 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174002
21.
21. S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
22.
22. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).
http://dx.doi.org/10.1038/363603a0
23.
23. D. S. Bethune, C. H. Riang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).
http://dx.doi.org/10.1038/363605a0
24.
24. P. M. Ajayan, J. M. Lambert, P. Bemier, L. Barbedette, C. Colliex, and J. M. Planeix, Chem. Phys. Lett. 215, 509 (1993).
http://dx.doi.org/10.1016/0009-2614(93)85711-V
25.
25. M. S. Dresselhaus and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Heidelberg, 2001), pp. 36.
26.
26. M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
27.
27. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, Mater. Sci. Eng., A 334, 173 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01807-X
28.
28. M. Popov, M. Kyotani, R. J. Nemanich, and Y. Koga, Phys. Rev. B 65, 033408 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.033408
29.
29. S. Hong and S. Myung, Nat. Nanotechnol. 2, 207 (2007).
http://dx.doi.org/10.1038/nnano.2007.89
30.
30. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, and K. Hata, Proc. Natl. Acad. Sci. U.S.A. 106, 6044 (2009).
http://dx.doi.org/10.1073/pnas.0900155106
31.
31. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Lett. 6, 96 (2006).
http://dx.doi.org/10.1021/nl052145f
32.
32. R. H. Baughman, A. A. Zahkidov, and W. A. de Heer, Science 297, 787 (2002).
http://dx.doi.org/10.1126/science.1060928
33.
33. R. Hatakeyama, T. Kaneko, T. Kato, and Y. F. Li, J. Phys. D: Appl. Phys. 44, 174004 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174004
34.
34. A. Thess et al., Science 273, 483 (1996).
http://dx.doi.org/10.1126/science.273.5274.483
35.
35. J.-C. Charlier, H. Amara, and Ph. Lambin, ACS Nano 1, 202 (2007).
http://dx.doi.org/10.1021/nn700049q
36.
36. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
37.
37. R. T. K. Baker, M. A. Barber, P. S. Harris, and R. J. Waite, J. Catal. 26, 51 (1972).
http://dx.doi.org/10.1016/0021-9517(72)90032-2
38.
38. A. J. Page, K. R. S. Chandrakumar, S. Irle, and K. Morokuma, J. Am. Chem. Soc. 133, 621 (2011).
http://dx.doi.org/10.1021/ja109018h
39.
39. S. Hofmann, C. Ducati, J. Robertson, and B. Kleinsorge, Appl. Phys. Lett. 83, 135 (2003).
http://dx.doi.org/10.1063/1.1589187
40.
40. S. Hofmann, G. Csanyi, A. C. Ferrari, M. C. Payne, and J. Robertson, Phys. Rev. Lett. 95, 036101 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.036101
41.
41. F. Ding, A. R. Harutyunyan, and B. I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 106, 2506 (2009).
http://dx.doi.org/10.1073/pnas.0811946106
42.
42. R. M. Sankaran, J. Phys. D: Appl. Phys. 44, 174005 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174005
43.
43. M. Meyyappan, J. Phys. D: Appl. Phys. 42, 213001 (2009).
http://dx.doi.org/10.1088/0022-3727/42/21/213001
44.
44. K. B. K. Teo et al., Nano Lett. 4, 921 (2004).
http://dx.doi.org/10.1021/nl049629g
45.
45. S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, Appl. Phys. Lett. 83, 4661 (2003).
http://dx.doi.org/10.1063/1.1630167
46.
46. S. Hofmann, B. Kleinsorge, C. Ducati, A. C. Ferrari, and J. Robertson, Diamond Relat. Mater. 13, 1171 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.046
47.
47. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003).
http://dx.doi.org/10.1021/ja036622c
48.
48. Y. H. Miyauchi, S. H. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama, Chem. Phys. Lett. 387, 198 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.116
49.
49. X. L. Li, X. M. Tu, S. Zaric, K. Welsher, W. S. Seo, W. Zhao, and H. J. Dai, J. Am. Chem. Soc. 129, 15770 (2007).
http://dx.doi.org/10.1021/ja077886s
50.
50. Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, J. Am. Chem. Soc. 132, 9570 (2010).
http://dx.doi.org/10.1021/ja103362j
51.
51. M. Cantoro et al., Nano Lett. 6, 1107 (2006).
http://dx.doi.org/10.1021/nl060068y
52.
52. M. Cantoro et al., J. Appl. Phys. 105, 064304 (2009).
http://dx.doi.org/10.1063/1.3091394
53.
53. C. Ducati, I. Alexandrou, M. Chhowalla, J. Robertson, and G. A. J. Amaratunga, J. Appl. Phys. 95, 6387 (2004).
http://dx.doi.org/10.1063/1.1728293
54.
54. A. Badzian and T. Badzian, Diamond Relat. Mater. 5, 93 (1996).
http://dx.doi.org/10.1016/0925-9635(96)80011-2
55.
55. W.-H. Chiang and R. M. Sankaran, Nature Mater. 8, 882 (2009).
http://dx.doi.org/10.1038/nmat2531
56.
56. S. Reich, L. Li, and J. Robertson, Chem. Phys. Lett. 421, 469 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.01.110
57.
57. Y. Shibuta, Diamond Relat. Mater. 20, 334 (2011).
http://dx.doi.org/10.1016/j.diamond.2011.01.031
58.
58. G. Zhang et al., Science 314, 974 (2006).
http://dx.doi.org/10.1126/science.1133781
59.
59. M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne, J. Appl. Phys. 90, 5308 (2001).
http://dx.doi.org/10.1063/1.1410322
60.
60. C. Bower, W. Zhu, S. Jin, and O. Zhou, Appl. Phys. Lett. 77, 830 (2000).
http://dx.doi.org/10.1063/1.1306658
61.
61. J.-M. Ting and K.-H. Liao, Chem. Phys. Lett. 396, 469 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.08.084
62.
62. T. Kato, G.-H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381, 422 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.10.007
63.
63. A. Gohier, T. M. Minea, A. M. Djouadi, A. Granier, and M. Dubosc, Chem. Phys. Lett. 421, 242 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.12.105
64.
64. A. Gohier, T. M. Minea, S. Point, J.-Y. Mevellec, J. Jimenez, M. A. Djouadi, and A. Granier, Diamond Relat. Mater. 18, 61 (2009).
http://dx.doi.org/10.1016/j.diamond.2008.09.022
65.
65. Z. Luo, S. Lim, Y. You, J. Miao, H. Gong, J. Zhang, S. Wang, J. Lin, and Z. Shen, Nanotechnology 19, 255607 (2008).
http://dx.doi.org/10.1088/0957-4484/19/25/255607
66.
66. Y. Y. Wang, S. Gupta, and R. J. Nemanich, Appl. Phys. Lett. 85, 2601 (2004).
http://dx.doi.org/10.1063/1.1796529
67.
67. Y. Li et al., Nano Lett. 4, 317 (2004).
http://dx.doi.org/10.1021/nl035097c
68.
68. Y. S. Min, E. J. Bae, B. S. Oh, D. Kang, and W. Park, J. Am. Chem. Soc. 127, 12498 (2005).
http://dx.doi.org/10.1021/ja054108w
69.
69. Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, Jpn. J. Appl. Phys. 49, 02BA01 (2010).
http://dx.doi.org/10.1143/JJAP.49.02BA01
70.
70. M. Mao and A. Bogaerts, J. Phys. D: Appl. Phys. 43, 315203 (2010).
http://dx.doi.org/10.1088/0022-3727/43/31/315203
71.
71. M. Mao and A. Bogaerts, J. Phys. D: Appl. Phys. 43, 205201 (2010).
http://dx.doi.org/10.1088/0022-3727/43/20/205201
72.
72. D. Hash, D. Bose, T. R. Govindan, and M. Meyyappan, J. Appl. Phys. 93, 6284 (2003).
http://dx.doi.org/10.1063/1.1568155
73.
73. A. Okita, Y. Suda, A. Ozeki, H. Sugawara, Y. Sakai, A. Oda, and J. Nakamura, J. Appl. Phys. 99, 014302 (2006).
http://dx.doi.org/10.1063/1.2150599
74.
74. K. Ostrikov and H. Mehdipour, ACS Nano 5, 8372 (2011).
http://dx.doi.org/10.1021/nn2030989
75.
75. I. B. Denysenko, S. Xu, J. D. Long, P. P. Rutkevych, N. A. Azarenkov, and K. Ostrikov, J. Appl. Phys. 95, 2713 (2004).
http://dx.doi.org/10.1063/1.1642762
76.
76. D. B. Hash and M. Meyyappan, J. Appl. Phys. 93, 750 (2003).
http://dx.doi.org/10.1063/1.1525854
77.
77. I. Levchenko, K. Ostrikov, M. Keidar, and U. Cvelbar, J. Phys. D: Appl. Phys. 41, 132004 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/132004
78.
78. M. S. Bell, K. B. K. Teo, and W. I. Milne, J. Phys. D: Appl. Phys. 40, 2285 (2007).
http://dx.doi.org/10.1088/0022-3727/40/8/S07
79.
79. M. Grujicic, G. Cao, and B. Gersten, J. Mater. Sci. 38, 1819 (2003).
http://dx.doi.org/10.1023/A:1023252432202
80.
80. D. B. Hash, M. S. Bell, K. B. K. Teo, B. A. Cruden, W. I. Milne, and M. Meyyappan, Nanotechnology 16, 925 (2005).
http://dx.doi.org/10.1088/0957-4484/16/6/050
81.
81. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2471
82.
82. J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J.-C. Charlier, Phys. Rev. Lett. 87, 275504 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.275504
83.
83. S. Irle, Y. Ohta, Y. Okamote, A. J. Page, Y. Wang, and K. Morokuma, Nano Res. 2, 755 (2009).
http://dx.doi.org/10.1007/s12274-009-9078-8
84.
84. J.-Y. Raty, F. Gygi, and G. Galli, Phys. Rev. Lett. 95, 096103 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.096103
85.
85. Y. Ohta, Y. Okamoto, A. J. Page, S. Irle, and K. Morokuma, ACS Nano 3, 3413 (2009).
http://dx.doi.org/10.1021/nn900784f
86.
86. A. J. Page, Y. Ohta, S. Irle, and K. Morokuma, Acc. Chem. Res. 43, 1375 (2010).
http://dx.doi.org/10.1021/ar100064g
87.
87. Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, ACS Nano 2, 1437 (2008).
http://dx.doi.org/10.1021/nn8001906
88.
88. A. J. Page, Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, J. Phys. Chem. C 113, 20198 (2009).
http://dx.doi.org/10.1021/jp9053549
89.
89. A. Borjesson and K. Bolton, J. Phys. Chem. C 114, 18045 (2010).
http://dx.doi.org/10.1021/jp1045707
90.
90. A. J. Page, H. Yamane, Y. Ohta, S. Irle, and K. Morokuma, J. Am. Chem. Soc. 132, 15699 (2010).
http://dx.doi.org/10.1021/ja106264q
91.
91. S. Karoui, H. Amara, C. Bichara, and F. Ducastelle, ACS Nano 4, 6114 (2010).
http://dx.doi.org/10.1021/nn101822s
92.
92. E. C. Neyts, Y. Shibuta, A. C. T. van Duin, and A. Bogaerts, ACS Nano 4, 6665 (2010).
http://dx.doi.org/10.1021/nn102095y
93.
93. E. C. Neyts, A. C. T. van Duin, and A. Bogaerts, J. Am. Chem. Soc. 133, 17225 (2011).
http://dx.doi.org/10.1021/ja204023c
94.
94. M. Moors, H. Amara, T. Visart de Bocarmé, C. Bichara, F. Ducastelle, N. Kruse, and J.-C. Charlier, ACS Nano 3, 511 (2009).
http://dx.doi.org/10.1021/nn800769w
95.
95. H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard, and F. Ducastelle, Phys. Rev. B 79, 014109 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014109
96.
96. H. Amara, C. Bichara, and F. Ducastelle, Phys. Rev. Lett. 100, 056105 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.056105
97.
97. X. Fan, R. Buczko, A. A. Puretzky, D. B. Geohegan, J. Y. Howe, S. T. Pantelides, and S. J. Pennycook, Phys. Rev. Lett. 90, 145501 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.145501
98.
98. Y. H. Lee, S. G. Kim, and D. Tomanek, Phys. Rev. Lett. 78, 2393 (1998).
http://dx.doi.org/10.1103/PhysRevLett.78.2393
99.
99. A. N. Andriotis, M. Menon, and G. Froudakis, Phys. Rev. Lett. 85, 3193 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3193
100.
100. W. Zhu, A. Börjesson, and K. Bolton, Carbon 48, 470 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.09.064
101.
101. D. Kondo, S. Sato, and Y. Awano, Chem. Phys. Lett. 422, 481 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.03.017
102.
102. A. G. Nasibulin, P. V. Pikhitsa, H. Jiang, and E. Kauppinen, Carbon 43, 2251 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.03.048
103.
103. F. Abild-Pedersen, J. K. Nørskov, J. R. Rostrup-Nielsen, J. Sehested, and S. Helveg, Phys. Rev. B 73, 115419 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.115419
104.
104. D. L. Trimm, Catal. Rev. - Sci. Eng. 16, 155 (1977).
http://dx.doi.org/10.1080/03602457708079636
105.
105. Q. Wang, K. H. Lim, S.-W. Yang, Y. Yang, and Y. Chen, Theor. Chem. Acc. 128, 17 (2011).
http://dx.doi.org/10.1007/s00214-010-0736-4
106.
106. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. Nørskov, Nature (London) 427, 426 (2004).
http://dx.doi.org/10.1038/nature02278
107.
107. Q. Wang, M.-F. Ng, S.-W. Yang, Y. Yang, and Y. Chen, ACS Nano 4, 939 (2010).
http://dx.doi.org/10.1021/nn901761u
108.
108. D. A. Gomez-Gualdron, J. Zhao, and P. B. Balbuena, J. Chem. Phys. 134, 014705 (2011).
http://dx.doi.org/10.1063/1.3509387
109.
109. F. Ding, A. Rosén, and K. Bolton, Carbon 43, 2215 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.03.021
110.
110. J. Zhao, A. Martinez-Limia, and P. B. Balbuena, Nanotechnology 16, S575 (2005).
http://dx.doi.org/10.1088/0957-4484/16/7/035
111.
111. M. A. Ribas, F. Ding, P. B. Balbuena, and B. I. Yakobson, J. Chem. Phys. 131, 224501 (2009).
http://dx.doi.org/10.1063/1.3266947
112.
112. Y. Shibuta and S. Maruyama, Physica B 323, 187 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)00896-7
113.
113. Y. Shibuta and S. Maruyama, Chem. Phys. Lett. 382, 381 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.10.080
114.
114. W. E. Alvarez, F. Pompeo, J. E. Herrera, L. Balzano, and D. E. Resasco, Chem. Mater. 14, 1853 (2002).
http://dx.doi.org/10.1021/cm011613t
115.
115. F. Ding, A. Rosén, and K. Bolton, J. Chem. Phys. 121, 2775 (2004).
http://dx.doi.org/10.1063/1.1770424
116.
116. F. Ding, A. Rosén, and K. Bolton, Chem. Phys. Lett. 393, 309 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.056
117.
117. F. Ding, K. Bolton, and A. Rosén, Appl. Surf. Sci. 252, 5254 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.12.022
118.
118. F. Ding, K. Bolton, and A. Rosén, Comput. Mater. Sci. 35, 243 (2006).
http://dx.doi.org/10.1016/j.commatsci.2004.08.010
119.
119. J. C. Burgos, H. Reyna, B. I. Yakobson, and P. B. Balbuena, J. Phys. Chem. C 114, 6952 (2010).
http://dx.doi.org/10.1021/jp911905p
120.
120. E. C. Neyts, A. C. T. van Duin, and A. Bogaerts, “Enhanced carbon nanotube nucleation by low energy ion bombardment,” (unpublished).
121.
121. A. A. Puretzky, D. B. Geohegan, S. Jesse, I. N. Ivanov, and G. Eres, Appl. Phys. A 81, 223 (2005).
http://dx.doi.org/10.1007/s00339-005-3256-7
122.
122. D. H. Lee, S. O. Kim, and W. J. Lee, J. Phys. Chem. C 114, 3454 (2010).
http://dx.doi.org/10.1021/jp911629j
123.
123. Y. Zhang and K. J. Smith, J. Catal. 231, 354 (2005).
http://dx.doi.org/10.1016/j.jcat.2005.02.010
124.
124. S. Naha, S. Sen, A. K. De, and I. K. Puri, Proc. Combust. Inst. 31, 1821 (2007).
http://dx.doi.org/10.1016/j.proci.2006.07.224
125.
125. S. Naha and I. K. Puri, J. Phys. D: Appl. Phys. 41, 065304 (2008).
http://dx.doi.org/10.1088/0022-3727/41/6/065304
126.
126. I. Denysenko and K. Ostrikov, Appl. Phys. Lett. 90, 251501 (2007).
http://dx.doi.org/10.1063/1.2750392
127.
127. I. Denysenko and K. Ostrikov, J. Phys. D: Appl. Phys. 42, 015208 (2009).
http://dx.doi.org/10.1088/0022-3727/42/1/015208
128.
128. N. Latorre, E. Romeo, F. Cazaña, T. Ubieto, C. Royo, J. I. Villacampa, and A. Monzón, J. Phys. Chem. C 114, 4773 (2010).
http://dx.doi.org/10.1021/jp906893m
129.
129. M. Grujicic, G. Cao, and B. Gersten, Appl. Surf. Sci. 199, 90 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00892-9
130.
130. A. C. Lysaght and W. K. S. Chiu, Nanotechnology 19, 165607 (2008).
http://dx.doi.org/10.1088/0957-4484/19/16/165607
131.
131. A. C. Lysaght and W. K. S. Chiu, Nanotechnology 20, 115605 (2009).
http://dx.doi.org/10.1088/0957-4484/20/11/115605
132.
132. M. R. Hosseini, N. Jalili, and D. A. Bruce, AIChE J. 55, 3152 (2009).
http://dx.doi.org/10.1002/aic.11959
133.
133. I. Levchenko and K. Ostrikov, Appl. Phys. Lett. 92, 063108 (2008).
http://dx.doi.org/10.1063/1.2841845
134.
134. I. Levchenko, K. Ostrikov, D. Mariotti, and A. B. Murphy, J. Appl. Phys. 104, 073308 (2008).
http://dx.doi.org/10.1063/1.2996272
135.
135. I. Levchenko, K. Ostrikov, J. Khachan, and S. V. Vladimirov, Phys. Plasmas 15, 103501 (2008).
http://dx.doi.org/10.1063/1.2988781
136.
136. E. Tam and K. Ostrikov, Nanotechnology 20, 375603 (2009).
http://dx.doi.org/10.1088/0957-4484/20/37/375603
137.
137. A. Bogaerts, M. Eckert, M. Mao, and E. Neyts, J. Phys. D: Appl. Phys. 44, 174030 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174030
138.
138. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
139.
139. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
140.
140. M. Y. Han, B. Oezyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
141.
141. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
142.
142. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2008).
http://dx.doi.org/10.1126/science.1136836
143.
143. K. S. Kim et al., Nature (London) 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
144.
144. X. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang, and H. J. Dai, Nat. Nanotechnol. 3, 538 (2008).
http://dx.doi.org/10.1038/nnano.2008.210
145.
145. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
146.
146. M. Xu, D. Fujita, K. Sagisaka, E. Watanabe, and N. Hanagata, ACS Nano 5, 1522 (2011).
http://dx.doi.org/10.1021/nn103428k
147.
147. H. Amara, C. Bichara, and F. Ducastelle, Phys. Rev. B 73, 113404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.113404
148.
148. H. Amara, C. Bichara, and F. Ducastelle, Surf. Sci. 602, 77 (2008).
http://dx.doi.org/10.1016/j.susc.2007.09.045
149.
149. J. Gao, Q. Yuan, H. Hu, J. Zhao, and F. Ding, J. Phys. Chem. C 115, 17695 (2011).
http://dx.doi.org/10.1021/jp2051454
150.
150. S. Aisenberg and R. Chabot, J. Appl. Phys. 42, 2953 (1971).
http://dx.doi.org/10.1063/1.1660654
151.
151. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
152.
152. E. D. de Rooij, A. W. Kleyn, and W. J. Goedheer, Phys. Chem. Chem. Phys. 12, 14067 (2010).
http://dx.doi.org/10.1039/c0cp00637h
153.
153. P. Träskelin, E. Salonen, A. V. Krasheninnikov, and J. Keinonen, J. Appl. Phys. 93, 1826 (2003).
http://dx.doi.org/10.1063/1.1536012
154.
154. A. R. Sharma, R. Schneider, U. Toussaint, and K. Nordlund, J. Nucl. Mater. 363, 1283 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.01.180
155.
155. P. Träskelin, O. Saresoja, and K. Nordlund, J. Nucl. Mater. 375, 270 (2008).
http://dx.doi.org/10.1016/j.jnucmat.2007.11.012
156.
156. E. Neyts, M. Tacq, and A. Bogaerts, Diamond Relat. Mater. 15, 1663 (2006).
http://dx.doi.org/10.1016/j.diamond.2006.02.003
157.
157. E. Neyts, A. Bogaerts, and M. C. M. van de Sanden, J. Appl. Phys. 99, 014902 (2006).
http://dx.doi.org/10.1063/1.2150149
158.
158. E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikt, and M. C. M. van de Sanden, Nucl. Instrum. Methods Phys. Res. B 228, 315 (2005).
http://dx.doi.org/10.1016/j.nimb.2004.10.063
159.
159. M. Eckert, E. Neyts, and A. Bogaerts, J. Phys. D: Appl. Phys. 41, 032006 (2008).
http://dx.doi.org/10.1088/0022-3727/41/3/032006
160.
160. H. U. Jäger and A. Belov, Phys. Rev. B 68, 1 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.024201
161.
161. A. Belov and H. U. Jäger, Comput. Mater. Sci. 24, 16 (2003).
http://dx.doi.org/10.1016/S0927-0256(02)00419-6
162.
162. N. Marks, J. Phys.: Condens. Mater. 14, 2901 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/308
163.
163. W. L. Quan, H. X. Li, F. Zhao, L. Ji, W. Du, H. D. Zhou, and J. M. Chen, Phys. Lett. A 374, 2150 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.01.059
164.
164. W. L. Quan, H. X. Li, F. Zhao, L. Ji, W. Du, H. D. Zhou, and J. M. Chen, Chin. Phys. Lett. 27, 088102 (2010).
http://dx.doi.org/10.1088/0256-307X/27/8/088102
165.
165. E. Neyts, M. Mao, M. Eckert, and A. Bogaerts, Plasma Processing of Nanomaterials, edited by R. M. Sankaran (CRC Press, Boca Raton, FL, 2012), pp. 245290.
166.
166. E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikt, and M. C. M. van de Sanden, Diamond Relat. Mater. 13, 1873 (2004).
http://dx.doi.org/10.1016/j.diamond.2004.05.011
167.
167. A.-L. Hamon, J. Verbeeck, D. Schryvers, J. Benedikt, and R. M. C. M. van de Sanden, J. Mater. Chem. 14, 2030 (2004).
http://dx.doi.org/10.1039/b406468m
168.
168. E. Neyts, A. Bogaerts, and M. C. M. van de Sanden, Appl. Phys. Lett. 88, 141922 (2006).
http://dx.doi.org/10.1063/1.2193803
169.
169. E. Neyts, M. Eckert, and A. Bogaerts, Chem. Vap. Deposition 13, 312 (2007).
http://dx.doi.org/10.1002/cvde.200606551
170.
170. Z. Wan, J. F. Christian, and S. L. Anderson, Phys. Rev. Lett. 69, 1352 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1352
171.
171. Y. Basir and S. L. Anderson, J. Chem. Phys. 107, 8370 (1997).
http://dx.doi.org/10.1063/1.475037
172.
172. S. Watanabe, N. S. Ishioka, T. Sekine, A. Osa, M. Koizumi, H. Shimomura, K. Yoshikawa, and H. Muramatsu, J. Radioanal. Nucl. Chem. 255, 495 (2003).
http://dx.doi.org/10.1023/A:1022524214082
173.
173. A. Kaplan, A. Bekkerman, B. Tsipinyuk, and E. J. Kolodney, J. Chem. Phys. 117, 3484 (2002).
http://dx.doi.org/10.1063/1.1491898
174.
174. E. Neyts and A. Bogaerts, Carbon 47, 1028 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.12.023
175.
175. E. Neyts, A. Maeyens, G. Pourtois, and A. Bogaerts, Carbon 49, 1013 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.11.009
176.
176. T. Umakoshi, H. Ishida, T. Kaneko, and R. Hatakeyama, Plasma Fusion Res.: Rapid Commun. 6, 1206015 (2011).
http://dx.doi.org/10.1585/pfr.6.1206015
177.
177. J. A. Elliott, M. Hamm, and Y. Shibuta, J. Chem. Phys. 130, 034704 (2009).
http://dx.doi.org/10.1063/1.3058595
178.
178. A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, III, J. Phys. Chem. A 105, 9396 (2001).
http://dx.doi.org/10.1021/jp004368u
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/30/3/10.1116/1.3702806
Loading
/content/avs/journal/jvstb/30/3/10.1116/1.3702806
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/30/3/10.1116/1.3702806
2012-04-16
2015-08-02

Abstract

Nanostructured carbonmaterials show a tremendous variety in atomic structure, morphology, properties, and applications. As all properties are ultimately determined by the structure of the material, a thorough understanding of the growth mechanisms that give rise to the particular structure is critical. On many occasions, it has been shown that plasma enhanced growth can be strongly beneficial. This review will describe the authors’ current understanding of plasma enhanced growth of carbon nanotubes, the prototypical example of nanostructured carbonmaterials, as obtained from experiments, simulations, and modeling. Specific emphasis is put on where experiments and computational approaches correspond, and where they differ. Also, the current status on simulating PECVDgrowth of some other carbon nanomaterials is reviewed, including amorphous carbon, graphene, and metallofullerenes. Finally, computational challenges with respect to the simulation of PECVDgrowth are identified.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/30/3/1.3702806.html;jsessionid=2shsadb33jms9.x-aip-live-02?itemId=/content/avs/journal/jvstb/30/3/10.1116/1.3702806&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: PECVD growth of carbon nanotubes: From experiment to simulation
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/30/3/10.1116/1.3702806
10.1116/1.3702806
SEARCH_EXPAND_ITEM