Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/31/3/10.1116/1.4795822
1.
1. T. E. Stern, B. S. Gossling, and R. H. Fowler, Proc. R. Soc. Lond., Ser. A 124, 699 (1929).
http://dx.doi.org/10.1098/rspa.1929.0147
2.
2. R. G. Forbes, A. Fischer, and M. S. Mousa, J. Vac. Sci. Technol. B 31, 02B103(2013).
http://dx.doi.org/10.1116/1.4765080
3.
3. R. G. Forbes, J. Vac. Sci. Technol. B 17, 526 (1999).
http://dx.doi.org/10.1116/1.590588
4.
4. R. G. Forbes and J. H. B. Deane, J. Vac. Sci. Technol. B 28, C2A33 (2010).
http://dx.doi.org/10.1116/1.3363858
5.
5. R. G. Forbes and J. H. B. Deane, for a plane-parallel device, the physical macroscopic field FM acting on the emitter is given by V/t, where V is the voltage between the planes and t is their separation. If, due to series resistance, the measured voltage Vm is not equal to V, then the quantity Fps = Vm/t is not equal to FM and has no direct physical interpretation. We call Fps a “pseudo-field”, or, more generally, a “pseudo-quantity” (unpublished).
6.
6.A “technically complete equation” is a formal equation that contains a sufficient number of adjustable parameters to be able to encompass all the relevant physics related to the independent and dependent variables chosen. The adjustable parameters may be composite, and built up from several or many individual correction factors.
7.
7. R. G. Forbes, Nanotechnology 23, 288001 (2012).
http://dx.doi.org/10.1088/0957-4484/23/28/288001
8.
8. J. Lee, H. Lee, K. Heo, B. Y. Lee, and S. Hong, Nanotechnology 23, 288002 (2012).
http://dx.doi.org/10.1088/0957-4484/23/28/288002
9.
9. R. G. Forbes and J. H. B. Deane, Proc. R. Soc. Lond., Ser. A 467, 2927 (2011). See electronic supplementary material.
http://dx.doi.org/10.1098/rspa.2011.0025
10.
10. N. D. Lang and W. Kohn, Phys. Rev. B. 7, 3541 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.3541
11.
11. R. G. Forbes, Ultramicroscopy 79, 25 (1999).
http://dx.doi.org/10.1016/S0304-3991(99)00098-4
12.
12. P. H. Cutler and J. J. Gibbons, Phys. Rev. 111, 394 (1958).
http://dx.doi.org/10.1103/PhysRev.111.394
13.
13. D. Nagy and P. H. Cutler, Phys. Lett. 10, 263 (1964).
http://dx.doi.org/10.1016/0031-9163(64)90491-3
14.
14. P. H. Cutler and D. Nagy, Surface Sci. 3, 71 (1965).
http://dx.doi.org/10.1016/0039-6028(65)90020-8
15.
15. E. L. Murphy and R. H. Good, Phys. Rev. 102, 1464 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1464
16.
16. R. G. Forbes, J. H. B. Deane, A. Fischer, and M. S. Mousa, J. Vac. Sci. Technol. B 31, 02B102 (2013).
http://dx.doi.org/10.1116/1.4765096
17.
17. R. G. Forbes and J. H. B. Deane, Proc. R. Soc. Lond., Ser. A 463, 2907 (2007).
http://dx.doi.org/10.1098/rspa.2007.0030
18.
18. R. G. Forbes, J. Vac. Sci. Technol. B 26, 788 (2008).
http://dx.doi.org/10.1116/1.2827505
19.
19. S. W. Barry and M. H. Weichold, J. Vac. Sci. Technol. B 11, 379 (1993).
http://dx.doi.org/10.1116/1.586864
20.
20. C. J. Edgcombe and N. de Jonge, J. Vac. Sci. Technol. B 24, 869 (2006).
http://dx.doi.org/10.1116/1.2179456
21.
21. C. J. Edgcombe and N. de Jonge, J. Phys. D: Appl. Phys. 40, 4123 (2007).
http://dx.doi.org/10.1088/0022-3727/40/14/005
22.
22. J. He, P. H. Cutler, N. M. Miskovsky, and T. R. Feuchtwang, Surf. Sci. 246, 348 (1991).
http://dx.doi.org/10.1016/0039-6028(91)90437-W
23.
23. L. D. Landau, E. M. Lifschitz and P. Pitaevskii, Electrodynamics of Continuous Media, 2nd English ed. (Butterworth-Heineman, Oxford, reprinted with corrections 1995), §3.
24.
24. R. G. Forbes, J. Vac. Sci. Technol. B 28, 1326 (2010).
http://dx.doi.org/10.1116/1.3501118
25.
25. X. Z. Qin, W. L. Wang, N. S. Xu, Z. B. Li, and R. G. Forbes, Proc. R. Soc. Lond., Ser. A 467, 1029 (2011).
http://dx.doi.org/10.1098/rspa.2010.0460
26.
26. M. S. Wang, L.-M. Peng, J. Y. Wang, C. N. Jin, and Q. Chen, J. Phys. Chem. B 110, 9397 (2006).
http://dx.doi.org/10.1021/jp054971i
27.
27. R. G. Forbes, e-print arXiv:1209.6611.
28.
28. W. P. Dyke, J. K. Trolan, W. W. Dolan, and G. Barnes, J. Appl. Phys. 24, 570 (1953).
http://dx.doi.org/10.1063/1.1721330
29.
29. J. C. Wiesner and T. E. Everhart, J. Appl. Phys. 44, 2140 (1973).
http://dx.doi.org/10.1063/1.1662526
30.
30. H.-M. Huang, Z.-B. Li, and W.-L. Wang, J. Vac. Sci. Technol. B 29, 021802 (2011).
http://dx.doi.org/10.1116/1.3566075
31.
31. W.-L. Wang, J.-W. Shao, and Z.-B. Li, Chem. Phys. Lett. 522, 83 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.002
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/31/3/10.1116/1.4795822
Loading
/content/avs/journal/jvstb/31/3/10.1116/1.4795822
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/31/3/10.1116/1.4795822
2013-03-22
2016-05-27

Abstract

Recent research has described an improved method of Fowler–Nordheim (FN) plot analysis, based on the definition and evaluation of a slope correction factor and a new form of intercept correction factor. In this improved approach, there exists a basic approximation that neglects certain terms in the general theory, and focuses on the influence of the form of the tunneling barrier on the values of basic slope ( ) and intercept ( ) correction factors. Simple formulae exist that allow these to be evaluated numerically for a barrier of arbitrary well-behaved form. This paper makes an initial exploration of the effects of barrier form on FN plot analysis. For a planar emitter, two models for the correlation-and-exchange (C&E) potential energy (PE) are used. For the Schottky–Nordheim barrier, it is shown that numerical and analytical approaches generate equivalent results. This agreement supports the validity of the numerical methods used. Comparisons with results for the Cutler–Gibbons barrier show that small differences in the assumed C&E PE make little difference to values of and . Schottky's planar image PE has then been used, in conjunction with the electrostatic PE variation associated with a spherical emitter model, to explore the influence of apex radius on correction-factor values, for values of . Both and increase significantly as decreases, especially . At low values of barrier field , depends approximately linearly on 1/, with a slope that depends on . Suggestions are made for how the exploratory work described in this paper might be extended.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/31/3/1.4795822.html;jsessionid=wrs8nZiyxblIyqACqMLM2Qbu.x-aip-live-06?itemId=/content/avs/journal/jvstb/31/3/10.1116/1.4795822&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/31/3/10.1116/1.4795822&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/31/3/10.1116/1.4795822'
Right1,Right2,Right3,