Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Kawata, H. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, Nature Mater. 3, 444 (2004).
3. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, Nature 404, 53 (2000).
4. R. Seliger and W. Fleming, J. Appl. Phys. 45, 1416 (1974).
5. R. Piner, J. Zhu, F. Xu, S. Hong, and C. Mirkin, Science 283, 661 (1999).
6. R. Menon, A. Patel, D. Gil, and H. Smith, Mater. Today 8, 26 (2005).
7. R. F. Pease, Microelectron. Eng. 78–79, 381 (2005).
8. J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S. W. Nam, K. B. Kim, and M. J. Rooks, J. Vac. Sci. Technol. B 27, 2622 (2009).
9. M. Kirchner and M. Kahl, Acta Phys. Pol. A 116, S198 (2009).
10. E. Abbe, Archiv für Mikroskopische Anatomie 9, 413 (1873).
11. A. Broers, A. Hoole, and J. Ryan, Microelectron. Eng. 32, 131 (1996).
12. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000).
13. T. H. P. Chang, M. G. R. Thomson, E. Kratschmer, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, and S. Zolgharnain, J. Vac. Sci. Technol. B 14, 3774 (1996).
14. T. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, Microelectron. Eng. 57–58, 117 (2001).
15. A. Pepin, V. Studer, D. Decanini, and Y. Chen, Microelectron. Eng. 73–74, 233 (2004).
16. B. Bilenberg, S. Jacobsen, M. Schmidt, L. Skjolding, P. Shi, P. Bøggild, J. Tegenfeldt, and A. Kristensen, Microelectron. Eng. 83, 1609 (2006).
17. L. E. Ocola and A. Stein, J. Vac. Sci. Technol. B 24, 3061 (2006).
18. M. M. Greve, A. M. Vial, and B. Holst, “The beynon gabor zone plate: A new tool for de Broglie matter waves and hard x-rays,” (unpublished).
19. A. Olkhovets and H. G. Craighead, J. Vac. Sci. Technol. B 17, 1366 (1999).
20. D. Rio, C. Constancias, M. Saied, B. Icard, and L. Pain, J. Vac. Sci. Technol. B 27, 2512 (2009).
21. A. Tilke, M. Vogel, F. Simmel, A. Kriele, R. H. Blick, H. Lorenz, D. A. Wharam, and J. P. Kotthaus, J. Vac. Sci. Technol. B 17, 1594 (1999).
22. S. Yasin, D. Hasko, and H. Ahmed, Microelectron. Eng. 61–62, 745 (2002).
23. G. Piaszenski, “Application Department, Raith GmbH,” personal communication (2012).
24. H. Jaksch and J. P. Vermeulen, Adv. Mater. Process 116, 33 (2005).
25. J. A. Liddle et al., J. Vac. Sci. Technol. B 19, 476 (2001).
26. J. P. Ballantyne, J. Vac. Sci. Technol. 12, 1257 (1975).

Data & Media loading...


Article metrics loading...



Electron beam lithography (EBL) is a maskless lithography technique used in numerous applications for fabrication of ultrahigh-resolution photolithography masks. The main disadvantage of EBL is that it is time-consuming, requiring the pattern to be written in a successive fashion. Various approaches are used to lower the write time. Throughput-oriented EBL instruments used in industrial applications typically apply a very high acceleration voltage (≥50 kV). However, in many research environments, more cost-effective instruments are used. These tools are usually optimized for high-resolution writing and are not very fast. Hence, they are normally not considered very suitable for writing large-scale structures with high pattern densities, even for limited resolution applications. In this paper, the authors show that a carefully considered optimization of the writing parameters in an EBL instrument () can improve the writing time to more than 40 times faster than commonly used instrument settings. The authors have applied the optimization procedure in the fabrication of high-precision photolithography masks. Chrome photolithography masks, 15 mm in diameter with a write resolution of 200 nm, were routinely produced during overnight exposures (less than 9 h). The write time estimated by the instrument software for most commonly used settings was close to 14 days. A comparison with conventional chrome masks fabricated using a high-resolution (128 000 dpi) photolithography mask printer showed that our pattern definition is significantly better.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd