1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Optimization of an electron beam lithography instrument for fast, large area writing at 10 kV acceleration voltage
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvstb/31/4/10.1116/1.4813325
1.
1. S. Kawata, H. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
http://dx.doi.org/10.1038/35089130
2.
2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. Soukoulis, Nature Mater. 3, 444 (2004).
http://dx.doi.org/10.1038/nmat1155
3.
3. M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, Nature 404, 53 (2000).
http://dx.doi.org/10.1038/35003523
4.
4. R. Seliger and W. Fleming, J. Appl. Phys. 45, 1416 (1974).
http://dx.doi.org/10.1063/1.1663422
5.
5. R. Piner, J. Zhu, F. Xu, S. Hong, and C. Mirkin, Science 283, 661 (1999).
http://dx.doi.org/10.1126/science.283.5402.661
6.
6. R. Menon, A. Patel, D. Gil, and H. Smith, Mater. Today 8, 26 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00699-1
7.
7. R. F. Pease, Microelectron. Eng. 78–79, 381 (2005).
http://dx.doi.org/10.1016/j.mee.2005.01.009
8.
8. J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S. W. Nam, K. B. Kim, and M. J. Rooks, J. Vac. Sci. Technol. B 27, 2622 (2009).
http://dx.doi.org/10.1116/1.3253652
9.
9. M. Kirchner and M. Kahl, Acta Phys. Pol. A 116, S198 (2009).
10.
10. E. Abbe, Archiv für Mikroskopische Anatomie 9, 413 (1873).
http://dx.doi.org/10.1007/BF02956173
11.
11. A. Broers, A. Hoole, and J. Ryan, Microelectron. Eng. 32, 131 (1996).
http://dx.doi.org/10.1016/0167-9317(95)00368-1
12.
12. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00352-4
13.
13. T. H. P. Chang, M. G. R. Thomson, E. Kratschmer, H. S. Kim, M. L. Yu, K. Y. Lee, S. A. Rishton, B. W. Hussey, and S. Zolgharnain, J. Vac. Sci. Technol. B 14, 3774 (1996).
http://dx.doi.org/10.1116/1.588666
14.
14. T. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, Microelectron. Eng. 57–58, 117 (2001).
http://dx.doi.org/10.1016/S0167-9317(01)00528-7
15.
15. A. Pepin, V. Studer, D. Decanini, and Y. Chen, Microelectron. Eng. 73–74, 233 (2004).
http://dx.doi.org/10.1016/S0167-9317(04)00104-2
16.
16. B. Bilenberg, S. Jacobsen, M. Schmidt, L. Skjolding, P. Shi, P. Bøggild, J. Tegenfeldt, and A. Kristensen, Microelectron. Eng. 83, 1609 (2006).
http://dx.doi.org/10.1016/j.mee.2006.01.142
17.
17. L. E. Ocola and A. Stein, J. Vac. Sci. Technol. B 24, 3061 (2006).
http://dx.doi.org/10.1116/1.2366698
18.
18. M. M. Greve, A. M. Vial, and B. Holst, “The beynon gabor zone plate: A new tool for de Broglie matter waves and hard x-rays,” (unpublished).
19.
19. A. Olkhovets and H. G. Craighead, J. Vac. Sci. Technol. B 17, 1366 (1999).
http://dx.doi.org/10.1116/1.590762
20.
20. D. Rio, C. Constancias, M. Saied, B. Icard, and L. Pain, J. Vac. Sci. Technol. B 27, 2512 (2009).
http://dx.doi.org/10.1116/1.3253650
21.
21. A. Tilke, M. Vogel, F. Simmel, A. Kriele, R. H. Blick, H. Lorenz, D. A. Wharam, and J. P. Kotthaus, J. Vac. Sci. Technol. B 17, 1594 (1999).
http://dx.doi.org/10.1116/1.590795
22.
22. S. Yasin, D. Hasko, and H. Ahmed, Microelectron. Eng. 61–62, 745 (2002).
http://dx.doi.org/10.1016/S0167-9317(02)00468-9
23.
23. G. Piaszenski, “Application Department, Raith GmbH,” personal communication (2012).
24.
24. H. Jaksch and J. P. Vermeulen, Adv. Mater. Process 116, 33 (2005).
25.
25. J. A. Liddle et al., J. Vac. Sci. Technol. B 19, 476 (2001).
http://dx.doi.org/10.1116/1.1359174
26.
26. J. P. Ballantyne, J. Vac. Sci. Technol. 12, 1257 (1975).
http://dx.doi.org/10.1116/1.568511
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/31/4/10.1116/1.4813325
Loading
/content/avs/journal/jvstb/31/4/10.1116/1.4813325
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/31/4/10.1116/1.4813325
2013-07-23
2014-07-29

Abstract

Electron beam lithography (EBL) is a maskless lithography technique used in numerous applications for fabrication of ultrahigh-resolution photolithography masks. The main disadvantage of EBL is that it is time-consuming, requiring the pattern to be written in a successive fashion. Various approaches are used to lower the write time. Throughput-oriented EBL instruments used in industrial applications typically apply a very high acceleration voltage (≥50 kV). However, in many research environments, more cost-effective instruments are used. These tools are usually optimized for high-resolution writing and are not very fast. Hence, they are normally not considered very suitable for writing large-scale structures with high pattern densities, even for limited resolution applications. In this paper, the authors show that a carefully considered optimization of the writing parameters in an EBL instrument () can improve the writing time to more than 40 times faster than commonly used instrument settings. The authors have applied the optimization procedure in the fabrication of high-precision photolithography masks. Chrome photolithography masks, 15 mm in diameter with a write resolution of 200 nm, were routinely produced during overnight exposures (less than 9 h). The write time estimated by the instrument software for most commonly used settings was close to 14 days. A comparison with conventional chrome masks fabricated using a high-resolution (128 000 dpi) photolithography mask printer showed that our pattern definition is significantly better.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/31/4/1.4813325.html;jsessionid=2s9n6d6qj8el4.x-aip-live-06?itemId=/content/avs/journal/jvstb/31/4/10.1116/1.4813325&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optimization of an electron beam lithography instrument for fast, large area writing at 10 kV acceleration voltage
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/31/4/10.1116/1.4813325
10.1116/1.4813325
SEARCH_EXPAND_ITEM