Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/31/5/10.1116/1.4821635
1.
1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).
http://dx.doi.org/10.1073/pnas.0502848102
2.
2. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, J. Vac. Sci. Technol. B 25, 2558 (2007).
http://dx.doi.org/10.1116/1.2789446
3.
3. S. Iijima, Nature (London) 354, 56 (1991).
http://dx.doi.org/10.1038/354056a0
4.
4. M. Keidar, Y. Raitses, A. Knapp, and A. Waas, Carbon 44, 1022 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.10.008
5.
5. H. Park, S. Choi, S. l Lee, and K. H. Koh, J. Vac. Sci. Technol. B 22, 1290 (2004).
http://dx.doi.org/10.1116/1.1740760
6.
6. S. Kumar, I. Levchenko, M. Keidar, and K. Ostrikov, Appl. Phys. Lett. 97, 151503 (2010).
http://dx.doi.org/10.1063/1.3502562
7.
7. R. Ritikos, S. A. Rahman, S. M. A. Gani, M. R. Muhamad, and Y. K. Yap, Carbon 49, 1842 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.01.006
8.
8. M. Mannsberger, A. Kukovecz, V. Georgakilas, J. Rechthaler, F. Hasi, and G. Allmaier, Carbon 42, 953 (2004).
http://dx.doi.org/10.1016/j.carbon.2003.12.049
9.
9. Z. Tsakadze, K. Ostrikov, J. D. Long, and S. Xu, Diam. Relat. Mater. 13, 1923 (2004).
http://dx.doi.org/10.1016/j.diamond.2004.06.010
10.
10. M. C. Kan, J. L. Huang, J. C. Sung, and D. F. Lii, J. Vac. Sci. Technol. B 21, 1216 (2003)
http://dx.doi.org/10.1116/1.1574045
11.
11. A. Kumar, D. K. Avasthi, A. Tripathi, L. D. Filip and J. D. Carey, J. C. Pivin, J. Appl. Phys. 102, 044305 (2007).
http://dx.doi.org/10.1063/1.2767227
12.
12. Y. C. Sui, B. Z. Cui, R. Guardian, D. R. Acosta, L. Martinez, and R. Perez, Carbon 40, 1011 (2002).
http://dx.doi.org/10.1016/S0008-6223(01)00230-5
13.
13. D. J. Norris and E. S. Aydil, Science 338, 625 (2012).
http://dx.doi.org/10.1126/science.1230283
14.
14. C. Li, Y. Chen, Y. Wang, Z. Iqbal, M. Chhowalla, and S. Mitra, J. Mater. Chem. 17, 2406 (2007).
http://dx.doi.org/10.1039/b618518e
15.
15. P. V. Kamat, J. Phys. Chem. Lett. 4, 1727 (2013).
http://dx.doi.org/10.1021/jz400902s
16.
16. P. Avouris, Chem. Phys. 281, 429 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00376-2
17.
17. A. Star, Y. Lu, K. Bradley, and G. Grener, Nano Lett. 4, 1587 (2004).
http://dx.doi.org/10.1021/nl049337f
18.
18. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. -L Cheung, and C. M. Lieber, Science 289, 94 (2000).
http://dx.doi.org/10.1126/science.289.5476.94
19.
19. D. Li and R. B. Kaner, Science 320, 1170 (2008).
http://dx.doi.org/10.1126/science.1158180
20.
20. P. J. Wessely, F. Wessely, E. Birinci, B. Riedinger, and U. Schwalke, J. Vac. Sci. Technol. B 30, 03D114 (2012).
http://dx.doi.org/10.1116/1.4711128
21.
21. J. R. Lake, A. Cheng, S. Selverston, Z. Tanaka, J. Koehne, M. Meyyappan, and B. Chen, J. Vac. Sci. Technol. B 30, 03D118 (2012).
http://dx.doi.org/10.1116/1.4712537
22.
22. M. Peckerar et al., J. Vac. Sci. Technol. B 29, 011008 (2011).
http://dx.doi.org/10.1116/1.3524906
23.
23. R. A. Barton, J. Parpia, and H. G. Craighead, J. Vac. Sci. Technol. B 29, 050801 (2011).
http://dx.doi.org/10.1116/1.3623419
24.
24. V. V. Deshpande, H.-Y. Chiu, H. W. Ch. Postma, C. Miko, L. Forro, and M. Bockrath, Nano Lett. 6, 1092 (2006).
http://dx.doi.org/10.1021/nl052513f
25.
25. K. Bazaka, M. V. Jacob, R. J. Crawford, and E. P. Ivanova, Acta Biomater. 7, 2015 (2011).
http://dx.doi.org/10.1016/j.actbio.2010.12.024
26.
26. K. Bradley, J. Gabriel, A. Star, and G. Gruner, Appl. Phys. Lett. 83, 3821 (2003).
http://dx.doi.org/10.1063/1.1619222
27.
27. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287, 1801 (2000).
http://dx.doi.org/10.1126/science.287.5459.1801
28.
28. F. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song, and C. Fan, Nanoscale 2, 1021 (2010).
http://dx.doi.org/10.1039/b9nr00401g
29.
29. T. Manabe, S. Nitta, S. Abo, F. Wakaya, and M. Takai, J. Vac. Sci. Technol. B 31, 02B110 (2013).
http://dx.doi.org/10.1116/1.4790518
30.
30. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, and H. G. Yoon, Carbon 43, 23 (2005).
http://dx.doi.org/10.1016/j.carbon.2004.08.015
31.
31. G. G. Jernigan et al., J. Vac. Sci. Technol. B 30, 03D110 (2012).
http://dx.doi.org/10.1116/1.3701700
32.
32. A. K. Chakraborty, J. Jacobs, C. Anderson, C. J. Roberts, and M. R. C. Hunt, J. Appl. Phys. 100, 084321 (2006).
http://dx.doi.org/10.1063/1.2360774
33.
33. J. Zheng, R. Yang, L. Xie, J. Qu, Y. Liu, and X. Li, Adv. Mater. 22, 1451 (2010).
http://dx.doi.org/10.1002/adma.200903147
34.
34. M. J. Behr, E. A. Gaulding, K. A. Mkhoyan, and E. S. Aydil, J. Vac. Sci. Technol. B 28, 1187 (2010).
http://dx.doi.org/10.1116/1.3498737
35.
35. W.-H. Chiang and R. M. Sankaran, Nat. Mater. 8, 882 (2009).
http://dx.doi.org/10.1038/nmat2531
36.
36. Z. L. Tsakadze, I. Levchenko, K. Ostrikov, and S. Xu, Carbon 45, 2022 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.030
37.
37. K. Ostrikov, J. D. Long, P. P. Rutkevych, and S. Xu, Vacuum 80, 1126 (2006).
http://dx.doi.org/10.1016/j.vacuum.2006.01.025
38.
38. I. Levchenko, U. Cvelbar, M. Modic, G. Filipič, X. X. Zhong, M. Mozetič, and K. Ostrikov, J. Phys. Chem. Lett. 4, 681 (2013).
http://dx.doi.org/10.1021/jz400092m
39.
39. K. Ostrikov, E. C. Neyts, and M. Meyyappan, Adv. Phys. 62, 113 (2013).
http://dx.doi.org/10.1080/00018732.2013.808047
40.
40. K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.489
41.
41. H. Wang and J. J. Moore, J. Vac. Sci. Technol. B 28, 1081 (2010).
http://dx.doi.org/10.1116/1.3497030
42.
42. H. W. Wei, K. C. Leou, M. T. Wei, Y. Y. Lin, and C. H. Tsai, J. Appl. Phys. 98, 044313 (2005).
http://dx.doi.org/10.1063/1.1993776
43.
43. S.-F. Lee, Y.-P. Chang, and L.-Y. Lee, J. Vac. Sci. Technol. B 26, 1765 (2008).
http://dx.doi.org/10.1116/1.2981084
44.
44. I. Levchenko, S. Y. Huang, K , Ostrikov, and S. Xu, Nanotechnology 21, 025605 (2010).
http://dx.doi.org/10.1088/0957-4484/21/2/025605
45.
45. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, J. Phys. Chem. C 113, 4257 (2009).
http://dx.doi.org/10.1021/jp900791y
46.
46. Z. J. Han et al., J. Phys. D: Appl. Phys. 44, 174019 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174019
47.
47. D. H. Seo, S. Kumar, A. E. Rider, Z. Han, and K. Ostrikov, Opt. Mat. Express 2, 700 (2012).
http://dx.doi.org/10.1364/OME.2.000700
48.
48. I. Levchenko, K. Ostrikov, M. Keidar, and U. Cvelbar, J. Phys. D: Appl. Phys. 41, 132004 (2008).
http://dx.doi.org/10.1088/0022-3727/41/13/132004
49.
49. I. Levchenko and K. Ostrikov, Nanotechnology 19, 335703 (2008).
http://dx.doi.org/10.1088/0957-4484/19/33/335703
50.
50. I. Levchenko and K. Ostrikov, J. Phys. D: Appl. Phys. 40, 2308 (2007).
http://dx.doi.org/10.1088/0022-3727/40/8/S11
51.
51. D. M. Nothern and J. M. Millunchick, J. Vac. Sci. Technol. B 30, 060603 (2012).
http://dx.doi.org/10.1116/1.4754563
52.
52. S. S. Coffee, S. K. Stanley, and J. G. Ekerdt, J. Vac. Sci. Technol. B 24, 1913 (2006).
http://dx.doi.org/10.1116/1.2221318
53.
53. S. Kumar, I. Levchenko, K. Ostrikov, and J. A. McLaughlin, Carbon 50, 325 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.07.060
54.
54. I. Levchenko, K Ostrikov, and A. B. Murphy, J. Phys. D: Appl. Phys. 41, 092001 (2008).
http://dx.doi.org/10.1088/0022-3727/41/9/092001
55.
55. I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, J. Appl. Phys. 98, 064304 (2005).
http://dx.doi.org/10.1063/1.2040000
56.
56. P. Jiang, S. Kar, and Y. Zhou, Phys. Plasmas 20, 012126 (2013).
http://dx.doi.org/10.1063/1.4789986
57.
57. I. Levchenko, K. Ostrikov, M. Keidar, and S. Xu, Appl. Phys. Lett. 89, 033109 (2006).
http://dx.doi.org/10.1063/1.2222249
58.
58. I. Levchenko, K. Ostrikov, D. Mariotti, and A. B. Murphy, J. Appl. Phys. 104, 073308 (2008).
http://dx.doi.org/10.1063/1.2996272
59.
59. S. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Phys. Plasmas 8, 2549 (2001).
http://dx.doi.org/10.1063/1.1343887
60.
60. T. Okumura, Phys. Res. Intern. 2010, 164249 (2010).
http://dx.doi.org/10.1155/2010/164249
61.
61. H.-W. Huang, C.-C. Kao, T.-H. Hsueh, C.-C. Yu, C.-F. Lin, J.-T. Chu, H.-C. Kuo, and S.-C. Wang, Mater. Sci. Eng. B 113, 125 (2004).
http://dx.doi.org/10.1016/j.mseb.2004.07.004
62.
62. B. J. M. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer, and M. Loncar, Diam. Relat. Mater. 19, 621 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.01.011
63.
63. L. V. Nang and E.-T. Kim, J. Electrochem. Soc. 159, K93 (2012)
http://dx.doi.org/10.1149/2.082204jes
64.
64. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, and D. Mariotti, Appl. Phys. Lett. 93, 183102 (2008).
http://dx.doi.org/10.1063/1.3012572
65.
65. H. Deutsch, H. Kersten, S. Klagge, and A. Rutscher, Contrib. Plasma Phys. 28, 149 (1988).
http://dx.doi.org/10.1002/ctpp.2150280206
66.
66. H. Kersten and G. M. W. Kroesen, J. Vac. Sci. Technol. A 8, 38 (1990).
http://dx.doi.org/10.1116/1.576403
67.
67. H. Kersten, H. Deutsch, H. Steffen, G. M. W. Kroesen, and R. Hippler, Vacuum 63, 385 (2001).
http://dx.doi.org/10.1016/S0042-207X(01)00350-5
68.
68. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature 367, 519 (1994).
http://dx.doi.org/10.1038/367519a0
69.
69. V. Derycke, R. Martel, M. Radosavljevic, F. M. Ross, and P. Avouris, Nano Lett. 2, 1043 (2002).
http://dx.doi.org/10.1021/nl0256309
70.
70. X. M. H. Huang, R. Caldwell, L. Huang, S. C. Jun, M. Huang, M. Y. Sfeir, and S. P. O'Brien, J. Hone, Nano Lett. 5, 1515 (2005).
http://dx.doi.org/10.1021/nl050886a
71.
71. B. Liu, W. Ren, L. Gao, S. Li, S. Pei, C. Liu, C. Jiang, and H. M. Cheng, J. Am. Chem. Soc. 131, 2082 (2009).
http://dx.doi.org/10.1021/ja8093907
72.
72. S. Huang, Q. Cai, J. Chen, Y. Qian, and L. Zhang, J. Am. Chem. Soc. 131, 2094 (2009).
http://dx.doi.org/10.1021/ja809635s
73.
73. P. J. F. Harris, Carbon 45, 229 (2007).
http://dx.doi.org/10.1016/j.carbon.2006.09.023
74.
74. X. Li, A. Cao, Y. J. Jung, R. t. Vajtai, and P. M. Ajayan, Nano Lett. 5, 1997 (2005).
http://dx.doi.org/10.1021/nl051486q
75.
75. P. Laveant, P. Werner, G. Gerth, and U. Gosele, Sol. State Phenom. 82–84, 189 (2002).
http://dx.doi.org/10.4028/www.scientific.net/SSP.82-84.189
76.
76. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, Nature 427, 426 (2004).
http://dx.doi.org/10.1038/nature02278
77.
77. J. Pezoldt, Y. V. Trushin, V. S. Kharlamov, A. A. Schmidt, V. Cimalla, and O. Ambacher, Nucl. Instrum. Methods Phys. Res. B 253, 241 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.10.058
78.
78. Z. Han, B. Tay, C. Tan, M. Shakerzadeh, and K. Ostrikov, ACS Nano 3, 3031 (2009).
http://dx.doi.org/10.1021/nn900846p
79.
79. J. M. Tirado, D. Nezich, X. Zhao, J. W. Chung, J. Kong, and T. Palacios J. Vac. Sci. Technol. B 28, C6D11 (2010)
http://dx.doi.org/10.1116/1.3516649
80.
80. R. M. Westervelt, Science 320, 324 (2008).
http://dx.doi.org/10.1126/science.1156936
81.
81. A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
82.
82. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori, Appl. Phys. Lett. 84, 4708 (2004).
http://dx.doi.org/10.1063/1.1762702
83.
83. K. Ostrikov, J. Phys. D: Appl. Phys. 44, 174003 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174003
84.
84. Y. F. Huang et al., Nature Nanotechnol. 2, 770 (2007).
http://dx.doi.org/10.1038/nnano.2007.389
85.
85. S. Kumar and K. Ostrikov, Nanoscale 3, 4296 (2011).
http://dx.doi.org/10.1039/c1nr10860c
86.
86. D. Mariotti, V. Švrček, and D.-G. Kim, Appl. Phys. Lett. 91, 183111 (2007).
http://dx.doi.org/10.1063/1.2805191
87.
87. S. Hacohen-Gourgy, I. Diamant, B. Almog, Y. Dubi, and G. Deutscher, Appl. Phys. Lett. 99, 172108 (2011).
http://dx.doi.org/10.1063/1.3657146
88.
88. A. E. Rider, S. Kumar, S. A. Furman, and K. Ostrikov, Chem. Commun. 48, 2659 (2012).
http://dx.doi.org/10.1039/c2cc17326c
89.
89. N. Behabtu et al., Nature Nanotechnol. 5, 406 (2010).
http://dx.doi.org/10.1038/nnano.2010.86
90.
90. M. Keidar, J. Phys. D 40, 2388 (2007).
http://dx.doi.org/10.1088/0022-3727/40/8/S18
91.
91. J. Shieh, S. Ravipati, F.-H. Ko, and K. Ostrikov, J. Phys. D: Appl. Phys. 44, 174010 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174010
92.
92. J. Shieh, F. J. Hou, Y. C. Chen, H. M. Chen, S. P. Yang, C. C. Cheng, and H. L. Chen, Adv. Mater. 22, 597 (2010).
http://dx.doi.org/10.1002/adma.200901864
93.
93. S. Kumar, I. Levchenko, Q. J. Cheng, J. Shieh, and K. Ostrikov, Appl. Phys. Lett. 100, 053115 (2012).
http://dx.doi.org/10.1063/1.3681782
94.
94. M. Wolter, M. Haass, T. Ockenga, J. Blazek, and H. Kersten, Plasma Process. Polym. 6, S620 (2009).
http://dx.doi.org/10.1002/ppap.200931603
95.
95. Ch. Hollenstein, Plasma Phys. Controlled Fusion 42, R93 (2000).
http://dx.doi.org/10.1088/0741-3335/42/10/201
96.
96. S.-H. Hong and J. Winter, J. Appl. Phys. 100, 064303 (2006).
http://dx.doi.org/10.1063/1.2338132
97.
97. M. Wolter, I. Levchenko, H. Kersten, and K. Ostrikov, Appl. Phys. Lett. 96, 133105 (2010).
http://dx.doi.org/10.1063/1.3374324
98.
98. Y. Watanabe, J. Phys. D. Appl. Phys. 39, R329 (2006)
http://dx.doi.org/10.1088/0022-3727/39/19/R01
99.
99. C. Cui and J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994).
http://dx.doi.org/10.1109/27.279018
100.
100. U. Kortshagen and U. Bhandarkar, Phys. Rev. E 60, 887 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.887
101.
101. Yu. Mankelevich, M. Olevanov, A. Pal', T. Rakhimova, A. Ryabinkin, A. Serov, and A. Filippov, Plasma Phys. Rep. 35, 191 (2009).
http://dx.doi.org/10.1134/S1063780X09030027
102.
102. J. Berndt, S. Hong, E. Kovacevic, I. Stefanovic, and J. Winter, Vacuum 71, 377 (2003).
http://dx.doi.org/10.1016/S0042-207X(02)00767-4
103.
103. I. Denysenko, I. Stefanović, B. Sikimić, J. Winter, N. A. Azarenkov, and N. Sadeghi, J. Phys. D: Appl. Phys. 44, 205204 (2011).
http://dx.doi.org/10.1088/0022-3727/44/20/205204
104.
104. I. Levchenko and O. Baranov, Vacuum 72, 205 (2003).
http://dx.doi.org/10.1016/j.vacuum.2003.08.004
105.
105. M. Wolter, I. Levchenko, H. Kersten, S. Kumar, and K. Ostrikov, J. Appl. Phys. 108, 053302 (2010).
http://dx.doi.org/10.1063/1.3475728
106.
106. I. Levchenko, M. Keidar, K. Ostrikov, and M. Y. Yu, J. Appl. Phys. 99, 013301 (2006).
http://dx.doi.org/10.1063/1.2136416
107.
107. E. Ertekin, D. C. Chrzan, and M. S. Daw, Phys. Rev. B 79, 155421 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155421
108.
108. I. Levchenko, O. Volotskova, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Carbon 48, 4570 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.07.055
109.
109. S. Karmakar, N. V. Kulkarni, A. B. Nawale, N. P. Lsalla, R. Mishra, and V. G. Sathe, J. Phys. D. Appl. Phys. 42, 115201 (2009).
http://dx.doi.org/10.1088/0022-3727/42/11/115201
110.
110. M. Keidar and I. Belis, J. Appl. Phys. 106, 103304 (2009).
http://dx.doi.org/10.1063/1.3262626
111.
111. A. B. Murphy, J. Phys. D: Appl. Phys. 46, 224004 (2013).
http://dx.doi.org/10.1088/0022-3727/46/22/224004
112.
112. M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas and K. Ostrikov, Appl. Phys. Lett. 92, 043129 (2008).
http://dx.doi.org/10.1063/1.2839609
113.
113. M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas, and K. Ostrikov, J. Appl. Phys. 103, 094318 (2008).
http://dx.doi.org/10.1063/1.2919712
114.
114. M. Keidar, A. M. Waas, Y. Raitses, and E. Waldorff, J. Nanosci. Nanotechnol. 6, 1309 (2006).
http://dx.doi.org/10.1166/jnn.2006.159
115.
115. O. Volotskova, A. Shashurin, M. Keidar, Y. Raitses, V. Demidov, and S. Adams, Nanotechnol. 21, 095705 (2010).
http://dx.doi.org/10.1088/0957-4484/21/9/095705
116.
116. O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, Nanoscale 2, 2281 (2010).
http://dx.doi.org/10.1039/c0nr00416b
117.
117. J. Gavillet, J. Thibault, O. Stephan, H. Amara, A. Loiseau, and C. Bichara, J. Nanosci. Nanotechnol. 4, 346 (2004).
http://dx.doi.org/10.1166/jnn.2004.068
118.
118. B. B. Wang, S. Lee, X. Z. Xu, Seungho Choi, H. Yan, B. Zhang, and W. Hao, Appl. Surf. Sci. 236, 6 (2004).
http://dx.doi.org/10.1016/j.apsusc.2004.03.243
119.
119. R. Sen, S. Suzuki, H. Kataura, and Y. Achiba, Chem. Phys. Lett. 349, 383 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)01208-8
120.
120. A. Kondyurin, I. Levchenko, Z.-J. Han, S. Yick, A. Mai-Prochnow, J. Fang, K. Ostrikov, and M. M. M. Bilek, “Hybrid graphite film–carbon nanotube platform for enzyme immobilization and protection,” Carbon (in press).
http://dx.doi.org/10.1016/j.carbon.2013.08.028
121.
121. S. Xu, I. Levchenko, S. Y. Huang, and K. Ostrikov, Appl. Phys. Lett. 95, 111505 (2009)
http://dx.doi.org/10.1063/1.3232210
122.
122. J. Fang, I. Aharonovich, I. Levchenko, K. Ostrikov, P. G. Spizzirri, S. Rubanov, and S. Prawer, Cryst. Growth Des. 12, 2917 (2012).
http://dx.doi.org/10.1021/cg300103a
123.
123. I. Levchenko, A. E. Rider, and K. Ostrikov, Appl. Phys. Lett. 90, 193110 (2007).
http://dx.doi.org/10.1063/1.2737428
124.
124. U. Cvelbar, I. Levchenko, G. Filipic, M. Mozetic, and K. Ostrikov, Appl. Phys. Lett. 100, 243103 (2012).
http://dx.doi.org/10.1063/1.4729053
125.
125. U. Cvelbar, K. Ostrikov, and M. Mozetic, Nanotechnology 19, 405605 (2008).
http://dx.doi.org/10.1088/0957-4484/19/40/405605
126.
126. K. Ostrikov, I. Levchenko, S. Xu, S. Y. Huang, Q. J. Cheng, J. D. Long, and M. Xu, Thin Solid Films 516, 6609 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.11.045
127.
127. K. Vasilev, A. Michelmore, H. J. Griesser, and R. D. Short, Chem. Commun. 2009, 3600 (2009).
http://dx.doi.org/10.1039/b904367e
128.
128. I. Levchenko, S. Kumar, M. M.A. Yajadda, Z. J. Han, S. Furman, and K. Ostrikov, J. Phys. D: Appl. Phys. 44, 174020 (2011).
http://dx.doi.org/10.1088/0022-3727/44/17/174020
129.
129. K. N. Ostrikov and M. Y. Yu, IEEE Trans. Plasma Sci. 26, 100 (1998).
http://dx.doi.org/10.1109/27.659538
130.
130. L. Yuan, X. Zhong, I. Levchenko, Y. Xia, and K. Ostrikov, Plasma Proc. Polym. 4, 612 (2007).
http://dx.doi.org/10.1002/ppap.200700048
131.
131. E. C. Neyts, Y. Shibuta, A. C. T. van Duin, and A. Bogaerts, ACS Nano 4, 6665 (2010).
http://dx.doi.org/10.1021/nn102095y
132.
132. E. C. Neyts, A. C. T. van Duin, and A. Bogaerts, J. Am. Chem. Soc. 133, 17225 (2011).
http://dx.doi.org/10.1021/ja204023c
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/31/5/10.1116/1.4821635
Loading
/content/avs/journal/jvstb/31/5/10.1116/1.4821635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/31/5/10.1116/1.4821635
2013-09-20
2016-06-25

Abstract

Plasma-based techniques offer many unique possibilities for the synthesis of various nanostructures both on the surface and in the plasma bulk. In contrast to the conventional chemical vapor deposition and some other techniques, plasma-based processes ensure high level of controllability, good quality of the produced nanomaterials, and reduced environmental risk. In this work, the authors briefly review the unique features of the plasma-enhanced chemical vapor deposition approaches, namely, the techniques based on inductively coupled, microwave, and arc discharges. Specifically, the authors consider the plasmas with the ion/electron density ranging from 10 to 10 cm, electron energy in the discharge up to ∼10 eV, and the operating pressure ranging from 1 to 10 Pa (up to 10 Pa for the atmospheric-pressure arc discharges). The operating frequencies of the discharges considered range from 460 kHz for the inductively coupled plasmas, and up to 2.45 GHz for the microwave plasmas. The features of the direct-current arc discharges are also examined. The authors also discuss the principles of operation of these systems, as well as the effects of the key plasma parameters on the conditions of nucleation and growth of the carbon nanostructures, mainly carbon nanotubes and graphene. Advantages and disadvantages of these plasma systems are considered. Future trends in the development of these plasma-based systems are also discussed.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/31/5/1.4821635.html;jsessionid=0pvlI1RjsmfBLXFnCRNAjXSZ.x-aip-live-03?itemId=/content/avs/journal/jvstb/31/5/10.1116/1.4821635&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/31/5/10.1116/1.4821635&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/31/5/10.1116/1.4821635'
Right1,Right2,Right3,