Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, J. Microelectromech. Syst. 21, 1347 (2012).
2. B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, IEEE Sens. J. 11, 2643 (2011).
3. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, Nano Lett. 10, 4962 (2010).
4. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, Opt. Express 20, 7954 (2012).
5. M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, Nature 401, 680 (1999).
6. T. Reisinger, A. A. Patel, H. Reingruber, K. Fladischer, W. E. Ernst, G. Bracco, H. I. Smith, and B. Holst, Phys. Rev. A 79, 053823 (2009).
7. T. Reisinger, S. Eder, M. M. Greve, H. I. Smith, and B. Holst, Microelectron. Eng. 87, 1011 (2010).
8. S. Rehbein, R. Doak, R. Grisenti, G. Schmahl, J. Toennies, and C. Woll, Microelectron. Eng. 53, 685 (2000).
9. T. Savas, M. Schattenburg, J. Carter, and H. Smith, J. Vac. Sci. Technol. B 14, 4167 (1996).
10. J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008), Chaps. 5 and 10.
11. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
12. S. D. Eder, T. Reisinger, M. M. Greve, G. Bracco, and B. Holst, New J. Phys. 14, 073014 (2012).
13. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000).
14. K. Ohya, K. Inai, H. Kuwada, T. Hayashi, and M. Saito, Surf. Coat. Technol. 202, 5310 (2008).
15. J. Chinn, I. Adesida, E. Wolf, and R. Tiberio, J. Vac. Sci. Technol. 19, 1418 (1981).
16. A. Olkhovets and H. G. Craighead, J. Vac. Sci. Technol. B 17, 1366 (1999).
17. Y. Chen, Y. Zhou, L. Wang, Z. Cui, E. Huq, and G. Pan, Microelectron. Eng. 85, 1152 (2008).
18. E. Hu, D. Tennant, R. Howard, L. Jackel, and P. Grabbe, J. Electron. Mater. 11, 883 (1982).
19. C.-H. Seo and K.-Y. Suh, Korean J. Chem. Eng. 25, 373 (2008).

Data & Media loading...


Article metrics loading...



Nanostructured dielectric membranes are used in several applications ranging from de Broglie matter-wave optical elements to photonic crystals. Precise pattern transfer and high aspect ratio structures are crucial for many applications. The authors present an improved method for direct patterning on free-standing, dielectric membranes using electron-beam (e-beam) lithography. The method is based on an advanced etchmask that both reduces charging and allows for tuning of the etch mask thickness to support high aspect ratios even for small structures. The authors etched structures as small as 50 nm radius holes in a 150 nm thick membrane and achieved aspect ratios of up to 1.3 for this structure size range. The etch mask thickness can be tuned to achieve the required aspect ratio. The etchmask is composed of a three layer stack consisting of poly(methyl methacrylate), SiO and an antireflective coating polymer. Scanning-electron micrographs of membranes produced with the fabrication method are presented.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd