NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).
2. H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999).
3. R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
4. L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).
5. V. Umanski, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, and M. Dolev, J. Cryst. Growth 311, 1658 (2009).
6. A. Kastalsky, R. Dingle, K. Y. Cheng, and A. Y. Cho, Appl. Phys. Lett. 41, 274 (1982).
7. K. Y. Cheng, A. Y. Cho, T. J. Drummond, and H. Morkoç, Appl. Phys. Lett. 40, 147 (1982).
8. X. Wallart, B. Pinsard, and F. Moliot, J. Appl. Phys. 97, 053706 (2005).
9. T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Device Lett. 13, 325 (1992).
10. M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, IEEE Electron Device Lett. 17, 273 (1996).
11. J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer, R. Bass, and H. B. Dietrich, IEEE Trans. Electron Devices 45, 1869 (1998).
12. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, IEEE Electron Device Lett. 20, 161 (1999).
13. L. Shen et al., IEEE Electron Device Lett. 22, 457 (2001).
14. H. Liu, O. Ostinelli, Y. Zeng, and C. R. Bolognesi, IEEE Trans. Electron Devices 54, 2792 (2007).
15. H. Detz, M. Nobile, C. Deutsch, P. Klang, A. M. Andrews, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, J. Mod. Opt. 58, 2015 (2011).
16. C. Deutsch, M. Krall, M. Brandstetter, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 101, 211117 (2012).
17. C. Deutsch et al., Opt. Express 21, 7209 (2013).
18. C. Ndebeka-Bandou, F. Carosella, R. Ferreira, and G. Bastard, Appl. Phys. Lett. 102, 191105 (2013).
19. J. Silvano de Sousa, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, E. Gornik, G. Strasser, and J. Smoliner, J. Appl. Phys. 108, 073707 (2010).
20. J. Silvano de Sousa, H. Detz, P. Klang, E. Gornik, G. Strasser, and J. Smoliner, Appl. Phys. Lett. 99, 152107 (2011).
21. H. Detz, P. Klang, A. M. Andrews, W. Schrenk, and G. Strasser, J. Cryst. Growth 323, 42 (2011).
22. G. L. Snider, I.-H. Tan, and E. L. Hu, J. Appl. Phys. 68, 2849 (1990).
23. D. V. Morgan and J. Frey, Electron. Lett. 14, 737 (1978).
24. H. Wieder, Appl. Phys. Lett. 38, 170 (1981).
25. H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, J. Vac. Sci. Technol. B 28, C3G19 (2010).
26. N. Uchitomi, T. Takei, M. Endoh, and Y. Jinbo, J. Vac. Sci. Technol. B 22, 2398 (2004).
27. M. G. Greally, M. Hayne, A. Usher, G. Hill, and M. Hopkinson, J. Appl. Phys. 79, 8465 (1996).
28. W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).
29. J. W. Harrison and J. R. Hauser, Phys. Rev. B 13, 5347 (1976).
30. W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, Appl. Phys. Lett. 101, 052107 (2012).
31. Y. Markus, U. Meirav, H. Shtrikman, and B. Laikhtman, Semicond. Sci. Technol. 9, 1297 (1994).
32. J. M. Fernández, J. Chen, and H. H. Wieder, J. Vac. Sci. Technol. A 11, 889 (1993).
33. V. Fink, E. Chevalier, O. J. Pitts, M. W. Dvorak, K. L. Kavanagh, C. R. Bolognesi, S. Hummel, and N. Moll, Appl. Phys. Lett. 79, 2384 (2001).
34. B. P. Gorman, A. G. Norman, R. Lukic-Zrnic, C. L. Littler, H. R. Moutinho, T. D. Golding, and A. G. Birdwell, J. Appl. Phys. 97, 063701 (2005).
35. E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).
36. J. Silvano de Sousa and J. Smoliner, Phys. Rev. B 85, 085303 (2012).
37. Th. Schäpers, J. Knobbe, and V. A. Guzenko, Phys. Rev. B 69, 235323 (2004).
38. J. P. Stanley, N. Pattinson, C. J. Lambert, and J. H. Jeerson, Physica E 20, 433 (2004).

Data & Media loading...


Article metrics loading...



The authors report on two-dimensional electron gases realized in the InGaAs/GaAsSb material system. For different doping levels, the sheet carrier densities were measured to be between 8.4. × 1010 and 8.3 × 1011 cm−2. A maximum electron mobility of 42 700 cm2/V s was observed at a temperature of 60 K. In addition to alloy scattering, remote ionized impurity scattering is a limiting factor for this material combination, as the GaAs Sb barriers have the same low effective mass as the InGaAs channel and therefore allow the wavefunction to protrude into the barrier more than in other established material systems. Angle resolved Hall measurements revealed a strong influence of the crystallographic directions on the carrier mobility and two-dimensional electron population. An additional feature of these two-dimensional electron systems, originating from the fact that InGaAs and GaAs Sb show a type-II band alignment and comparable bandgap energies, is spin splitting, due to the Rashba effect, with a Rashba-parameter of 0.42 eVÅ.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: InGaAs/GaAsSb based two-dimensional electron gases