1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
InGaAs/GaAsSb based two-dimensional electron gases
Rent:
Rent this article for
Access full text Article
/content/avs/journal/jvstb/32/2/10.1116/1.4863299
1.
1. H. Kroemer, Rev. Mod. Phys. 73, 783 (2001).
http://dx.doi.org/10.1103/RevModPhys.73.783
2.
2. H. L. Stormer, Rev. Mod. Phys. 71, 875 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.875
3.
3. R. Dingle, H. L. Störmer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978).
http://dx.doi.org/10.1063/1.90457
4.
4. L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).
http://dx.doi.org/10.1016/j.physe.2003.09.035
5.
5. V. Umanski, M. Heiblum, Y. Levinson, J. Smet, J. Nübler, and M. Dolev, J. Cryst. Growth 311, 1658 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.09.151
6.
6. A. Kastalsky, R. Dingle, K. Y. Cheng, and A. Y. Cho, Appl. Phys. Lett. 41, 274 (1982).
http://dx.doi.org/10.1063/1.93499
7.
7. K. Y. Cheng, A. Y. Cho, T. J. Drummond, and H. Morkoç, Appl. Phys. Lett. 40, 147 (1982).
http://dx.doi.org/10.1063/1.93018
8.
8. X. Wallart, B. Pinsard, and F. Moliot, J. Appl. Phys. 97, 053706 (2005).
http://dx.doi.org/10.1063/1.1858871
9.
9. T. Akazaki, K. Arai, T. Enoki, and Y. Ishii, IEEE Electron Device Lett. 13, 325 (1992).
http://dx.doi.org/10.1109/55.145073
10.
10. M. Chertouk, H. Heiss, D. Xu, S. Kraus, W. Klein, G. Böhm, G. Tränkle, and G. Weimann, IEEE Electron Device Lett. 17, 273 (1996).
http://dx.doi.org/10.1109/55.496455
11.
11. J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer, R. Bass, and H. B. Dietrich, IEEE Trans. Electron Devices 45, 1869 (1998).
http://dx.doi.org/10.1109/16.711349
12.
12. S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, IEEE Electron Device Lett. 20, 161 (1999).
http://dx.doi.org/10.1109/55.753753
13.
13. L. Shen et al., IEEE Electron Device Lett. 22, 457 (2001).
http://dx.doi.org/10.1109/55.954910
14.
14. H. Liu, O. Ostinelli, Y. Zeng, and C. R. Bolognesi, IEEE Trans. Electron Devices 54, 2792 (2007).
http://dx.doi.org/10.1109/TED.2007.904981
15.
15. H. Detz, M. Nobile, C. Deutsch, P. Klang, A. M. Andrews, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, J. Mod. Opt. 58, 2015 (2011).
http://dx.doi.org/10.1080/09500340.2011.604734
16.
16. C. Deutsch, M. Krall, M. Brandstetter, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 101, 211117 (2012).
http://dx.doi.org/10.1063/1.4766915
17.
17. C. Deutsch et al., Opt. Express 21, 7209 (2013).
http://dx.doi.org/10.1364/OE.21.007209
18.
18. C. Ndebeka-Bandou, F. Carosella, R. Ferreira, and G. Bastard, Appl. Phys. Lett. 102, 191105 (2013).
http://dx.doi.org/10.1063/1.4804551
19.
19. J. Silvano de Sousa, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, E. Gornik, G. Strasser, and J. Smoliner, J. Appl. Phys. 108, 073707 (2010).
http://dx.doi.org/10.1063/1.3487922
20.
20. J. Silvano de Sousa, H. Detz, P. Klang, E. Gornik, G. Strasser, and J. Smoliner, Appl. Phys. Lett. 99, 152107 (2011).
http://dx.doi.org/10.1063/1.3650715
21.
21. H. Detz, P. Klang, A. M. Andrews, W. Schrenk, and G. Strasser, J. Cryst. Growth 323, 42 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.10.014
22.
22. G. L. Snider, I.-H. Tan, and E. L. Hu, J. Appl. Phys. 68, 2849 (1990).
http://dx.doi.org/10.1063/1.346443
23.
23. D. V. Morgan and J. Frey, Electron. Lett. 14, 737 (1978).
http://dx.doi.org/10.1049/el:19780499
24.
24. H. Wieder, Appl. Phys. Lett. 38, 170 (1981).
http://dx.doi.org/10.1063/1.92273
25.
25. H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, J. Vac. Sci. Technol. B 28, C3G19 (2010).
http://dx.doi.org/10.1116/1.3276432
26.
26. N. Uchitomi, T. Takei, M. Endoh, and Y. Jinbo, J. Vac. Sci. Technol. B 22, 2398 (2004).
http://dx.doi.org/10.1116/1.1795253
27.
27. M. G. Greally, M. Hayne, A. Usher, G. Hill, and M. Hopkinson, J. Appl. Phys. 79, 8465 (1996).
http://dx.doi.org/10.1063/1.362481
28.
28. W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Phys. Rev. B 30, 4571 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4571
29.
29. J. W. Harrison and J. R. Hauser, Phys. Rev. B 13, 5347 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5347
30.
30. W. Chen, B. Chen, J. Yuan, A. Holmes, and P. Fay, Appl. Phys. Lett. 101, 052107 (2012).
http://dx.doi.org/10.1063/1.4740275
31.
31. Y. Markus, U. Meirav, H. Shtrikman, and B. Laikhtman, Semicond. Sci. Technol. 9, 1297 (1994).
http://dx.doi.org/10.1088/0268-1242/9/7/002
32.
32. J. M. Fernández, J. Chen, and H. H. Wieder, J. Vac. Sci. Technol. A 11, 889 (1993).
http://dx.doi.org/10.1116/1.578322
33.
33. V. Fink, E. Chevalier, O. J. Pitts, M. W. Dvorak, K. L. Kavanagh, C. R. Bolognesi, S. Hummel, and N. Moll, Appl. Phys. Lett. 79, 2384 (2001).
http://dx.doi.org/10.1063/1.1406982
34.
34. B. P. Gorman, A. G. Norman, R. Lukic-Zrnic, C. L. Littler, H. R. Moutinho, T. D. Golding, and A. G. Birdwell, J. Appl. Phys. 97, 063701 (2005).
http://dx.doi.org/10.1063/1.1834983
35.
35. E. A. de Andrada e Silva, G. C. La Rocca, and F. Bassani, Phys. Rev. B 50, 8523 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.8523
36.
36. J. Silvano de Sousa and J. Smoliner, Phys. Rev. B 85, 085303 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.085303
37.
37. Th. Schäpers, J. Knobbe, and V. A. Guzenko, Phys. Rev. B 69, 235323 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235323
38.
38. J. P. Stanley, N. Pattinson, C. J. Lambert, and J. H. Jeerson, Physica E 20, 433 (2004).
http://dx.doi.org/10.1016/j.physe.2003.08.052
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/2/10.1116/1.4863299
Loading
/content/avs/journal/jvstb/32/2/10.1116/1.4863299
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/32/2/10.1116/1.4863299
2014-01-29
2014-12-19

Abstract

The authors report on two-dimensional electron gases realized in the InGaAs/GaAsSb material system. For different doping levels, the sheet carrier densities were measured to be between 8.4. × 1010 and 8.3 × 1011 cm−2. A maximum electron mobility of 42 700 cm2/V s was observed at a temperature of 60 K. In addition to alloy scattering, remote ionized impurity scattering is a limiting factor for this material combination, as the GaAs Sb barriers have the same low effective mass as the InGaAs channel and therefore allow the wavefunction to protrude into the barrier more than in other established material systems. Angle resolved Hall measurements revealed a strong influence of the crystallographic directions on the carrier mobility and two-dimensional electron population. An additional feature of these two-dimensional electron systems, originating from the fact that InGaAs and GaAs Sb show a type-II band alignment and comparable bandgap energies, is spin splitting, due to the Rashba effect, with a Rashba-parameter of 0.42 eVÅ.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/32/2/1.4863299.html;jsessionid=3f7e2eco96026.x-aip-live-06?itemId=/content/avs/journal/jvstb/32/2/10.1116/1.4863299&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: InGaAs/GaAsSb based two-dimensional electron gases
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/2/10.1116/1.4863299
10.1116/1.4863299
SEARCH_EXPAND_ITEM