Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/32/2/10.1116/1.4863676
1.
1. V. N. Tondare, J. Vac. Sci. Technol. A 23, 1498 (2005).
http://dx.doi.org/10.1116/1.2101792
2.
2. L. Bischoff, Ultramicroscopy 103, 59 (2005).
http://dx.doi.org/10.1016/j.ultramic.2004.11.020
3.
3. J. L. Hanssen, S. B. Hill, J. H. Orloff, and J. J. McClelland, Nano Lett. 8, 2844 (2008).
http://dx.doi.org/10.1021/nl801472n
4.
4. Q. Ji, X. Jiang, T.-J. King, K.-N. Leung, K. Standiford, and S. B. Wilde, J. Vac. Sci. Technol. B 20, 2717 (2002).
http://dx.doi.org/10.1116/1.1526694
5.
5. J. I. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. (Springer, Berlin, 2003).
6.
6. I. Utke, P. Hoffmann, and J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008).
http://dx.doi.org/10.1116/1.2955728
7.
7. M. Knoll and E. Ruska, Zeitschrift für Phys. 78, 318 (1932).
http://dx.doi.org/10.1007/BF01342199
8.
8. J. H. Orloff and L. W. Swanson, J. Appl. Phys. 50, 6026 (1979).
http://dx.doi.org/10.1063/1.326679
9.
9. K. Horiuchi, T. Itakura, and H. Ishikawa, J. Vac. Sci. Technol. B 6, 937 (1988).
http://dx.doi.org/10.1116/1.584328
10.
10. M. Sato, Jpn. J. Appl. Phys. 31, L291 (1992).
http://dx.doi.org/10.1143/JJAP.31.L291
11.
11. W. H. Escovitz, T. R. Fox, and R. Levi-Setti, Proc. Natl. Acad. Sci. U.S.A. 72, 1826 (1975).
http://dx.doi.org/10.1073/pnas.72.5.1826
12.
12. J. H. Orloff and L. W. Swanson, J. Vac. Sci. Technol. 12, 1209 (1975).
http://dx.doi.org/10.1116/1.568497
13.
13. T. Itakura, K. Horiuchi, and S. Yamamoto, Microelectron. Eng. 3, 153 (1985).
http://dx.doi.org/10.1016/0167-9317(85)90022-X
14.
14. K. Horiuchi, T. Itakura, and H. Ishikawa, J. Vac. Sci. Technol. B 6, 241 (1988).
http://dx.doi.org/10.1116/1.584014
15.
15. E. W. Müller, Zeitschrift für Phys. 131, 136 (1951).
http://dx.doi.org/10.1007/BF01329651
16.
16. A. J. Melmed, Appl. Surf. Sci. 94–95, 17 (1996).
http://dx.doi.org/10.1016/0169-4332(95)00351-7
17.
17. B. W. Ward, J. A. Notte, and N. P. Economou, J. Vac. Sci. Technol. B 24, 2871 (2006).
http://dx.doi.org/10.1116/1.2357967
18.
18. S. Kalbitzer, Appl. Phys. A 79, 1901 (2004).
http://dx.doi.org/10.1007/s00339-004-2869-6
19.
19. J. L. Pitters, R. Urban, C. Vesa, and R. A. Wolkow, Ultramicroscopy 131, 56 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.03.013
20.
20. R. Urban, R. A. Wolkow, and J. L. Pitters, Ultramicroscopy 122, 60 (2012).
http://dx.doi.org/10.1016/j.ultramic.2012.07.026
21.
21. R. Urban, J. L. Pitters, and R. A. Wolkow, Appl. Phys. Lett. 100, 263105 (2012).
http://dx.doi.org/10.1063/1.4726112
22.
22. J. L. Pitters, R. Urban, and R. A. Wolkow, J. Chem. Phys. 136, 154704 (2012).
http://dx.doi.org/10.1063/1.3702209
23.
23. F. H. M. Rahman, J. A. Notte, R. H. Livengood, and S. Tan, Ultramicroscopy 126, 10 (2013).
http://dx.doi.org/10.1016/j.ultramic.2012.11.005
24.
24. J. H. Orloff, M. Utlaut, and L. W. Swanson, High Resolution Focused Ion Beams: FIB and Its Applications (Springer, Boston, MA, 2003).
25.
25. H. H. Rose, Geometrical Charged-Particle Optics, Springer Series in Optical Sciences, Vol. 142 (Springer, Berlin, 2009).
26.
26. N. Ernst, G. Bozdech, H. Schmidt, W. Schmidt, and G. L. Larkins, Appl. Surf. Sci. 67, 111 (1993).
http://dx.doi.org/10.1016/0169-4332(93)90301-Q
27.
27. R. Hill, J. A. Notte, and B. W. Ward, Phys. Procedia 1, 135 (2008).
http://dx.doi.org/10.1016/j.phpro.2008.07.088
28.
28. J. A. Notte et al., AIP Conf. Proc. 931, 489 (2007).
http://dx.doi.org/10.1063/1.2799423
29.
29. Y. V. Petrov and O. F. Vyvenko, Proc. SPIE 8036, 80360O1 (2011).
http://dx.doi.org/10.1117/12.886347
30.
30. R. Ramachandra, B. J. Griffin, and D. C. Joy, Ultramicroscopy 109, 748 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.01.013
31.
31. D. C. Bell, Microsc. Microanal. 15, 147 (2009).
http://dx.doi.org/10.1017/S1431927609090138
32.
32. L. Scipioni, C. A. Sanford, J. A. Notte, B. Thompson, and S. McVey, J. Vac. Sci. Technol. B 27, 3250 (2009).
http://dx.doi.org/10.1116/1.3258634
33.
33. H. A. Bethe, Phys. Rev. 59, 913 (1941).
http://dx.doi.org/10.1103/PhysRev.59.913
34.
34. K. Ohya, K. Inai, A. Nisawa, and A. Itoh, Nucl. Instrum. Meth. B 266, 541 (2008).
http://dx.doi.org/10.1016/j.nimb.2007.12.058
35.
35. M. Rösler, “Theory of ion–induced kinetic electron emission from solids,” in Ionization of Solids by Heavy Particles, NATO ASI Series, edited by R. A. Baragiora (Plenum, New York, 1985), pp. 2758.
36.
36. Y. Lin and D. C. Joy, Surf. Interface Anal. 37, 895 (2005).
http://dx.doi.org/10.1002/sia.2107
37.
37. J. Ferrón, E. Alonso, R. Baragiola, and A. Oliva-Florio, Phys. Rev. B 24, 4412 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.4412
38.
38. K. Ohya, T. Yamanaka, K. Inai, and T. Ishitani, Nucl. Instrum. Meth. B 267, 584 (2009).
http://dx.doi.org/10.1016/j.nimb.2008.11.003
39.
39. Y. V. Petrov, O. F. Vyvenko, and A. S. Bondarenko, J. Surf. Investig. 4, 792 (2010).
http://dx.doi.org/10.1134/S1027451010050186
40.
40. P. Riccardi, P. Barone, A. Bonanno, A. Oliva, and R. Baragiola, Phys. Rev. Lett. 84, 378 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.378
41.
41. G. Hlawacek, I. Ahmad, M. A. Smithers, and E. S. Kooij, Ultramicroscopy 135, 89 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.07.010
42.
42. K. Buchholt, P. Eklund, J. Jensen, J. Lu, A. L. Spetz, and L. Hultman, Scr. Mater. 64, 1141 (2011).
http://dx.doi.org/10.1016/j.scriptamat.2011.03.013
43.
43. G. Behan, D. Zhou, M. Boese, R. M. Wang, and H. Z. Zhang, J. Nanosci. Nanotechnol. 12, 1094 (2012).
http://dx.doi.org/10.1166/jnn.2012.4260
44.
44. D. Fox, Y. B. Zhou, A. O'Neill, S. Kumar, J. J. Wang, J. N. Coleman, G. S. Duesberg, J. F. Donegan, and H. Z. Zhang, Nanotechnology 24, 335702 (2013).
http://dx.doi.org/10.1088/0957-4484/24/33/335702
45.
45. R. van Gastel et al., Microsc. Microanal. 17, 928 (2011).
http://dx.doi.org/10.1017/S1431927611005514
46.
46. V. Veligura, G. Hlawacek, R. van Gastel, H. J. W. Zandvliet, and B. Poelsema, Beilstein J. Nanotechnol. 3, 501 (2012).
http://dx.doi.org/10.3762/bjnano.3.57
47.
47. G. Behan, J. F. Feng, H. Z. Zhang, P. N. Nirmalraj, and J. J. Boland, J. Vac. Sci. Technol. A 28, 1377 (2010).
http://dx.doi.org/10.1116/1.3502667
48.
48. S. Sijbrandij, J. A. Notte, L. Scipioni, C. Huynh, and C. A. Sanford, J. Vac. Sci. Technol. B 28, 73 (2010).
http://dx.doi.org/10.1116/1.3271254
49.
49. R. van Gastel, G. Hlawacek, S. Dutta, and B. Poelsema, “Backscattered helium spectroscopy in the helium ion microscope: Principles, resolution and applications,” in IOP Conference Series: Material Science and Engineering (European Microbeam Analysis Society, Porto, 2013).
50.
50. M. Mayer, AIP Conf. Proc. 541, 541 (1999).
http://dx.doi.org/10.1063/1.59188
51.
51. D.-E. Arafah, J. Meyer, H. Sharabati, and A. Mahmoud, Phys. Rev. A 39, 3836 (1989).
http://dx.doi.org/10.1103/PhysRevA.39.3836
52.
52. J. A. Notte, R. Hill, S. M. McVey, R. Ramachandra, B. J. Griffin, and D. C. Joy, Microsc. Microanal. 16, 599 (2010).
http://dx.doi.org/10.1017/S1431927610093682
53.
53. A. S. Marfunin, “Luminescence,” in Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer, Berlin, Heidelberg, 1979), Chap. 5, pp. 141222.
54.
54. J. Götze and U. Kempe, “Physical principles of cathodoluminescence (CL) and its applications in geosciences,” in Cathodoluminescence and Its Application in the Planetary Sciences, edited by A. Gucsik (Springer, Berlin, 2009), Chap. 1, pp. 122.
55.
55. C. Kerkdijk and E. Thomas, Physica 63, 577 (1973).
http://dx.doi.org/10.1016/0031-8914(73)90154-7
56.
56. W. Baird, M. Zivitz, and E. Thomas, Phys. Rev. A 12, 876 (1975).
http://dx.doi.org/10.1103/PhysRevA.12.876
57.
57. W. F. van der Weg and P. K. Rol, Nucl. Instrum. Meth. 38, 274 (1965).
http://dx.doi.org/10.1016/0029-554X(65)90154-0
58.
58. C. W. White, Nucl. Instrum. Meth. 149, 497 (1978).
http://dx.doi.org/10.1016/0029-554X(78)90916-3
59.
59. N. H. Tolk, I. S. T. Tsong, and C. W. White, Anal. Chem. 49, 16A (1977).
http://dx.doi.org/10.1021/ac50009a001
60.
60. D. Ghose and R. Hippler, “Ionoluminescence,” in Luminescence of Solids, edited by D. R. Vij (Springer, Berlin, 1998), pp. 189220.
61.
61. J. Pallon, C. Yang, R. Utui, M. Elfman, K. Malmqvist, P. Kristiansson, and K. Sjöland, Nucl. Instrum. Meth. B 130, 199 (1997).
http://dx.doi.org/10.1016/S0168-583X(97)00182-1
62.
62. U. Scherz, “Grundlagen der Festkörperphysik,” in Lehrbuch der Experimentalphysik, 2nd ed., edited by R. Kassing (Gruyter, Berlin, 1992), pp. 1107.
63.
63. M. V. Hoffman, J. Electrochem. Soc. 118, 1508 (1971).
http://dx.doi.org/10.1149/1.2408364
64.
64. G. M. Filippelli and M. L. Delaney, SEPM J. Sediment. Res. 63, 167 (1993).
http://dx.doi.org/10.1306/D4267AB9-2B26-11D7-8648000102C1865D
65.
65. R. Williams and K. Song, J. Phys. Chem. Solids 51, 679 (1990).
http://dx.doi.org/10.1016/0022-3697(90)90144-5
66.
66. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1 (2013).
http://dx.doi.org/10.1016/j.physrep.2013.02.001
67.
67. K. Schwartz, “Excitons and radiation damage in alkali halides,” in Atomic Physics Methods in Modern Research, Lecture Notes in Physics, Vol. 1, edited by K. P. Jungmann, J. Kowalski, I. Reinhard, and F. Träger (Springer, Berlin, 1997), pp. 351366.
68.
68. S. A. Boden, T. M. W. Franklin, L. Scipioni, D. M. Bagnall, and H. N. Rutt, Microsc. Microanal. 18, 1253 (2012).
http://dx.doi.org/10.1017/S1431927612013463
69.
69. M. T. Postek, A. Vladár, C. Archie, and B. Ming, Meas. Sci. Technol. 22, 024004 (2011).
http://dx.doi.org/10.1088/0957-0233/22/2/024004
70.
70. S. A. Boden, A. Asadollahbaik, H. N. Rutt, and D. M. Bagnall, Scanning 34, 107 (2012).
http://dx.doi.org/10.1002/sca.20267
71.
71. W. Jiang, V. Shutthanandan, B. Arey, and A. Lea, “Helium ion microscopy of microstructures and biological samples,” in Microscopic Microanalysis (Portland, 2010), available at http://www.microscopy.org/MandM/2010/jiang.pdf.
72.
72. M. S. Joens et al., Sci. Rep. 3, 3514 (2013).
http://dx.doi.org/10.1038/srep03514
73.
73. R. Luftig, J. Ultrastruct. Res. 20, 91 (1967).
http://dx.doi.org/10.1016/S0022-5320(67)80038-8
74.
74. R. van Gastel, G. Hlawacek, H. J. W. Zandvliet, and B. Poelsema, Microelectron. Reliab. 52, 2104 (2012).
http://dx.doi.org/10.1016/j.microrel.2012.06.130
75.
75. P. Townsend, M. Khanlary, and D. Hole, Surf. Coat. Technol. 201, 8160 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2006.01.075
76.
76. P. Townsend, Nucl. Instrum. Meth. B 286, 35 (2012).
http://dx.doi.org/10.1016/j.nimb.2011.10.070
77.
77. T. Sugahara et al., Jpn. J. Appl. Phys. 37, L398 (1998).
http://dx.doi.org/10.1143/JJAP.37.L398
78.
78. S. O. Kucheyev, M. Toth, M. R. Phillips, J. S. Williams, C. Jagadish, and G. Li, Appl. Phys. Lett. 78, 34 (2001).
http://dx.doi.org/10.1063/1.1337646
79.
79. V. Veligura, G. Hlawacek, R. van Gastel, H. J. W. Zandvliet, and B. Poelsema, “High resolution ionoluminescence study of defect creation and interaction” (unpublished).
80.
80. A. Bazhin, E. Rausch, and E. Thomas, Phys. Rev. B 14, 2583 (1976).
http://dx.doi.org/10.1103/PhysRevB.14.2583
81.
81. M. Aguilar, P. J. Chandler, and P. D. Townsends, Radiat. Eff. 40, 1 (1979).
http://dx.doi.org/10.1080/00337577908234484
82.
82. S. Ogawa, T. Iijima, S. Awata, R. Sugie, N. Kawasaki, and Y. Otsuka, Microsc. Microanal. 18, 814 (2012).
http://dx.doi.org/10.1017/S1431927612005922
83.
83. F. Watt, A. Bettiol, J. V. Kan, M. Ynsa, R. Minqin, R. Rajendran, C. Huifang, S. Fwu-Shen, and A. Jenner, Nucl. Instrum. Meth. B 267, 2113 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.03.069
84.
84. P. Rossi et al., Nucl. Instrum. Meth. B 181, 437 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00465-7
85.
85. R. Norarat, V. Marjomäki, X. Chen, M. Zhaohong, R. Minqin, C.-B. Chen, A. Bettiol, H. Whitlow, and F. Watt, Nucl. Instrum. Meth. B 306, 113 (2013).
http://dx.doi.org/10.1016/j.nimb.2012.12.052
86.
86. M. C. Lemme, D. C. Bell, J. R. Williams, L. A. Stern, B. W. H. Baugher, P. Jarillo-Herrero, and C. M. Marcus, ACS Nano 3, 2674 (2009).
http://dx.doi.org/10.1021/nn900744z
87.
87. D. Pickard et al., “Graphene nanoribbons fabricated by helium ion microscope,” in Bulletin of the American Physical Society, Vol. 55 (American Physical Society, Portland, Oregon, 2010).
88.
88. S. Nakaharai, T. Iijima, S. Ogawa, S. Suzuki, S.-l. Li, K. Tsukagoshi, S. Sato, and N. Yokoyama, ACS Nano 7, 5694 (2013).
http://dx.doi.org/10.1021/nn401992q
89.
89. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
http://dx.doi.org/10.1021/nl801457b
90.
90. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM, the Stopping and Range of Ions in Matter (SRIM Co., Chester, 2008).
91.
91. H. Zhang, Y. Miyamoto, and A. Rubio, Phys. Rev. Lett. 109, 265505 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.265505
92.
92. O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, and J. Keinonen, Nanotechnology 22, 175306 (2011).
http://dx.doi.org/10.1088/0957-4484/22/17/175306
93.
93. E. H. Ålgren, J. Kotakoski, O. Lehtinen, and A. V. Krasheninnikov, Appl. Phys. Lett. 100, 233108 (2012).
http://dx.doi.org/10.1063/1.4726053
94.
94. O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, A. Tolvanen, K. Nordlund, and J. Keinonen, Phys. Rev. B 81, 153401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.153401
95.
95. A. Turchanin and A. Gölzhäuser, Prog. Surf. Sci. 87, 108 (2012).
http://dx.doi.org/10.1016/j.progsurf.2012.05.001
96.
96. R. Ritter et al., Appl. Phys. Lett. 102, 063112 (2013).
http://dx.doi.org/10.1063/1.4792511
97.
97. A. J. Pearson, S. A. Boden, D. M. Bagnall, D. G. Lidzey, and C. Rodenburg, Nano Lett. 11, 4275 (2011).
http://dx.doi.org/10.1021/nl202269n
98.
98. Y. Kishimoto, T. Ohshima, M. Hashimoto, and T. Hayashi, J. Appl. Polym. Sci. 39, 2055 (1990).
http://dx.doi.org/10.1002/app.1990.070391003
99.
99. G. Hlawacek, V. Veligura, S. Lorbek, T. F. Mocking, A. George, R. van Gastel, H. J. W. Zandvliet, and B. Poelsema, Beilstein J. Nanotechnol. 3, 507 (2012).
http://dx.doi.org/10.3762/bjnano.3.58
100.
100. A. George, M. Knez, G. Hlawacek, D. Hagedoorn, H. H. J. Verputten, R. van Gastel, and J. E. ten Elshof, Langmuir 28, 3045 (2012).
http://dx.doi.org/10.1021/la204437r
101.
101. T. F. Mocking, G. Hlawacek, and H. J. W. Zandvliet, Surf. Sci. 606, 924 (2012).
http://dx.doi.org/10.1016/j.susc.2012.02.007
102.
102. M. A. E. Jepson, B. J. Inkson, C. Rodenburg, and D. C. Bell, Europhys. Lett. 85, 46001 (2009).
http://dx.doi.org/10.1209/0295-5075/85/46001
103.
103. K. Ura and S. Aoyagi, J. Electron Microsc. (Tokyo) 49, 157 (2000).
http://dx.doi.org/10.1093/oxfordjournals.jmicro.a023780
104.
104. F. H. M. Rahman, S. McVey, L. Farkas, J. A. Notte, S. Tan, and R. H. Livengood, Scanning 34, 129 (2012).
http://dx.doi.org/10.1002/sca.20268
105.
105. R. H. Livengood, S. Tan, R. Hallstein, J. A. Notte, S. McVey, and F. H. Rahman, Nucl. Instrum. Meth. A 645, 136 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.220
106.
106. J. A. Notte, Microsc. Today 20, 16 (2012).
http://dx.doi.org/10.1017/S1551929512000715
107.
107. H. M. Wu et al., Nanotechnology 24, 175302 (2013).
http://dx.doi.org/10.1088/0957-4484/24/17/175302
108.
108. T. H. P. Chang, J. Vac. Sci. Technol. 12, 1271 (1975).
http://dx.doi.org/10.1116/1.568515
109.
109. M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).
http://dx.doi.org/10.1002/sia.740010103
110.
110. J. Melngailis, Nucl. Instrum. Meth. B 80–81, 1271 (1993).
http://dx.doi.org/10.1016/0168-583X(93)90781-Z
111.
111. D. Winston et al., J. Vac. Sci. Technol. B 27, 2702 (2009).
http://dx.doi.org/10.1116/1.3250204
112.
112. D. J. Maas, E. van Veldhoven, P. Chen, V. Sidorkin, H. W. M. Salemink, E. van der Drift, and P. F. A. Alkemade, “Nanofabrication with a helium ion microscope,” in Metrology, Inspection, and Process Control for Microlithography XXIV, edited by C. J. Raymond (SPIE, San Jose, 2010), Vol. 7638, p. 763814.
113.
113. E. van der Drift and D. J. Maas, Nanofabrication: Techniques and Principles, edited by M. Stepanova and S. Dew (Springer, Vienna, 2012), pp. 93116.
114.
114. P. F. A. Alkemade, E. M. Koster, E. van Veldhoven, and D. J. Maas, Scanning 34, 90 (2012).
http://dx.doi.org/10.1002/sca.21009
115.
115. P. Chen, E. van Veldhoven, C. A. Sanford, H. W. M. Salemink, D. J. Maas, D. A. Smith, P. D. Rack, and P. F. A. Alkemade, Nanotechnology 21, 455302 (2010).
http://dx.doi.org/10.1088/0957-4484/21/45/455302
116.
116. L. Scipioni, C. A. Sanford, E. van Veldhoven, and D. J. Maas, Micros. Today 19, 22 (2011).
http://dx.doi.org/10.1017/S1551929511000307
117.
117. P. F. A. Alkemade and E. van Veldhoven, “Deposition, milling, and etching with a focused helium ion beam,” in Nanofabrication: Techniques and Principles, edited by M. Stepanova and S. Dew (Springer, Vienna, 2012), pp. 275300.
118.
118. C. A. Sanford, L. Stern, L. Barriss, L. Farkas, M. DiManna, R. Mello, D. J. Maas, and P. F. A. Alkemade, J. Vac. Sci. Technol. B 27, 2660 (2009).
http://dx.doi.org/10.1116/1.3237095
119.
119. K. Kohama, T. Iijima, M. Hayashida, and S. Ogawa, J. Vac. Sci. Technol. B 31, 031802 (2013).
http://dx.doi.org/10.1116/1.4800983
120.
120. P. F. A. Alkemade, P. Chen, E. van Veldhoven, and D. J. Maas, J. Vac. Sci. Technol. B 28, C6F22 (2010).
http://dx.doi.org/10.1116/1.3517536
121.
121. D. A. Smith, J. D. Fowlkes, and P. D. Rack, Nanotechnology 19, 415704 (2008).
http://dx.doi.org/10.1088/0957-4484/19/41/415704
122.
122. P. Sigmund, Nucl. Instrum. Meth. B 27, 1 (1987).
http://dx.doi.org/10.1016/0168-583X(87)90004-8
123.
123. M. Thompson, Phys. Rep. 69, 335 (1981).
http://dx.doi.org/10.1016/0370-1573(81)90106-X
124.
124. Sputtering by Particle Bombardment, Topics in Applied Physics, Vol. 110, edited by R. Behrisch and W. Eckstein (Springer, Berlin, Heidelberg, 2007).
125.
125. C. Fowley, Z. Diao, C. C. Faulkner, J. Kally, K. Ackland, G. Behan, H. Z. Zhang, a. M. Deac, and J. M. D. Coey, J. Phys. D. Appl. Phys. 46, 195501 (2013).
http://dx.doi.org/10.1088/0022-3727/46/19/195501
126.
126. J. Yang, D. C. Ferranti, L. A. Stern, C. A. Sanford, J. Huang, Z. Ren, L.-C. Qin, and A. R. Hall, Nanotechnology 22, 285310 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/285310
127.
127. A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker, J. Appl. Phys. 98, 014307 (2005).
http://dx.doi.org/10.1063/1.1947391
128.
128. J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
http://dx.doi.org/10.1038/35084037
129.
129. V. Veligura, G. Hlawacek, R. P. Berkelaar, R. van Gastel, H. J. W. Zandvliet, and B. Poelsema, Beilstein J. Nanotechnol. 4, 453 (2013).
http://dx.doi.org/10.3762/bjnano.4.53
130.
130. D. Fox, Y. Chen, C. C. Faulkner, and H. Z. Zhang, Beilstein J. Nanotechnol. 3, 579 (2012).
http://dx.doi.org/10.3762/bjnano.3.67
131.
131. M. M. Marshall, J. Yang, and A. R. Hall, Scanning 34, 101 (2012).
http://dx.doi.org/10.1002/sca.21003
132.
132. S. Tan, R. H. Livengood, D. Shima, J. A. Notte, and S. McVey, J. Vac. Sci. Technol. B 28, C6F15 (2010).
http://dx.doi.org/10.1116/1.3511509
133.
133. S. A. Boden, Z. Moktadir, D. M. Bagnall, H. Mizuta, and H. N. Rutt, Microelectron. Eng. 88, 2452 (2011).
http://dx.doi.org/10.1016/j.mee.2010.11.041
134.
134. M. Lucchese, F. Stavale, E. H. M. Ferreira, C. Vilani, M. Moutinho, R. B. Capaz, C. A. Achete, and A. Jorio, Carbon N. Y. 48, 1592 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.12.057
135.
135. Y. Wang, S. A. Boden, D. M. Bagnall, H. N. Rutt, and C. H. de Groot, Nanotechnology 23, 395302 (2012).
http://dx.doi.org/10.1088/0957-4484/23/39/395302
136.
136. R. H. Livengood, S. Tan, Y. Greenzweig, J. A. Notte, and S. McVey, J. Vac. Sci. Technol. B 27, 3244 (2009).
http://dx.doi.org/10.1116/1.3237101
137.
137. J. Laakmann, P. Jung, and W. Uelhoff, Acta Metall. 35, 2063 (1987).
http://dx.doi.org/10.1016/0001-6160(87)90034-4
138.
138. H. Rajainmäki, S. Linderoth, H. Hansen, R. Nieminen, and M. Bentzon, Phys. Rev. B 38, 1087 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.1087
139.
139. T. Wirtz, N. Vanhove, L. Pillatsch, D. Dowsett, S. Sijbrandij, and J. A. Notte, Appl. Phys. Lett. 101, 041601 (2012).
http://dx.doi.org/10.1063/1.4739240
140.
140. H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guilmain, N. de Jonge, and D. Drouin, Scanning 33, 135 (2011).
http://dx.doi.org/10.1002/sca.20262
141.
141. R. Hill and F. H. M. Rahman, Nucl. Instrum. Meth. A 645, 96 (2011).
http://dx.doi.org/10.1016/j.nima.2010.12.123
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/2/10.1116/1.4863676
Loading
/content/avs/journal/jvstb/32/2/10.1116/1.4863676
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/32/2/10.1116/1.4863676
2014-02-06
2016-05-27

Abstract

Helium ion microcopy based on gas field ion sources represents a new ultrahigh resolution microscopy and nanofabrication technique. It is an enabling technology that not only provides imagery of conducting as well as uncoated insulating nanostructures but also allows to create these features. The latter can be achieved using resists or material removal due to sputtering. The close to free-form sculpting of structures over several length scales has been made possible by the extension of the method to other gases such as neon. A brief introduction of the underlying physics as well as a broad review of the applicability of the method is presented in this review.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/32/2/1.4863676.html;jsessionid=Z18p0WTO5F6ggr+YFVTaJ0O2.x-aip-live-03?itemId=/content/avs/journal/jvstb/32/2/10.1116/1.4863676&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/32/2/10.1116/1.4863676&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/32/2/10.1116/1.4863676'
Right1,Right2,Right3,