Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/32/3/10.1116/1.4867436
1.
1. W. Haensch et al., IBM J. Res. Dev. 50, 339 (2006).
http://dx.doi.org/10.1147/rd.504.0339
2.
2. T. Denneulin, D. Cooper, J. Hartmann, and J. Rouivere, J. Appl. Phys. 112, 94314 (2012).
http://dx.doi.org/10.1063/1.4764045
3.
3. S. Reboh, P. Morin, M. Hytch, F. Houdellier, and A. Claverie, APL Mater. 1, 42117 (2013).
http://dx.doi.org/10.1063/1.4826545
4.
4. G. Wilk, R. Wallace, and J. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
5.
5. J. Robertson, Rep. Prog. Phys. 69, 327 (2006).
http://dx.doi.org/10.1088/0034-4885/69/2/R02
6.
6. J. Han, B. Choi, J. Yang, D. Moon, Y. Choi, R. Williams, and M. Meyyappan, Semicond. Sci. Technol. 28, 82003 (2013).
http://dx.doi.org/10.1088/0268-1242/28/8/082003
7.
7. J. Lee et al., Appl. Phys. Lett. 102, 223508 (2013).
http://dx.doi.org/10.1063/1.4809755
8.
8. K. Kuhn, Microelectron. Eng. 88, 1044 (2011).
http://dx.doi.org/10.1016/j.mee.2011.03.163
9.
9. S. King. H. Simka, D. Herr, H. Akinaga, and M. Garner, APL Mater. 1, 40701 (2013).
http://dx.doi.org/10.1063/1.4822437
10.
10. J. del Alamo, Nature 479, 317 (2011).
http://dx.doi.org/10.1038/nature10677
11.
11. M. Hudait, ECS Trans. 45, 581 (2012).
http://dx.doi.org/10.1149/1.3700922
12.
12. S. Datta, A. Thathachary, L. Liu, E. Hwang, A. Agrawal, and N. Agrawal, ECS Trans. 53, 3 (2013).
http://dx.doi.org/10.1149/05303.0003ecst
13.
13. J. Nah, H. Fang, C. Wang, K. Takei, M. Lee, E. Plis, S. Krishna, and A. Javey, Nano Lett. 12, 3592 (2012).
http://dx.doi.org/10.1021/nl301254z
14.
14. W. Tsai, N. Goel, S. Koveshnikov, P. Majhi, and W. Wang, Microelectron. Eng. 86, 1540 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.117
15.
15. G. He, X. Chen, and Z. Sun, Surf. Sci. Rep. 68, 68 (2013).
http://dx.doi.org/10.1016/j.surfrep.2013.01.002
16.
16. P. Ye, J. Vac. Sci. Technol. A 26, 697 (2008).
http://dx.doi.org/10.1116/1.2905246
17.
17. K. Hubbard and D. Schlom, J. Mater. Res. 11, 2757 (1996).
http://dx.doi.org/10.1557/JMR.1996.0350
18.
18. J. Yum et al., J. Vac. Sci. Technol. A 29, 61501 (2011).
http://dx.doi.org/10.1116/1.3628546
19.
19. J. Yum, T. Akyol, M. Lei, T. Hudnall, G. Bersuker, M. Downer, C. Bielawski, J. Lee, and S. Banerjee, J. Appl. Phys. 109, 64101 (2011).
http://dx.doi.org/10.1063/1.3553872
20.
20. J. Yum et al., Appl. Phys. Lett. 99, 33502 (2011).
http://dx.doi.org/10.1063/1.3614446
21.
21. J. Yum, G. Bersuker, J. Oh, and S. Banerjee, Appl. Phys. Lett. 100, 53501 (2012).
http://dx.doi.org/10.1063/1.3679720
22.
22. M. Lei, J. Yum, J. Price, T. Hudnall, C. Bielawski, S. Banerjee, P. Lysaght, G. Bersuker, and M. Downer, Appl. Phys. Lett. 100, 122906 (2012).
http://dx.doi.org/10.1063/1.3697646
23.
23. J. Yum et al., IEEE Trans. Electron Devices 58, 4384 (2011).
http://dx.doi.org/10.1109/TED.2011.2170073
24.
24. H. Shin et al., Appl. Phys. Lett. 103, 223504 (2013).
http://dx.doi.org/10.1063/1.4833815
25.
25. S. Carniglia and J. Hove, J. Nucl. Mater. 4, 165 (1961).
http://dx.doi.org/10.1016/0022-3115(61)90125-8
26.
26. S. Austerman, J. Nucl. Mater. 14, 225 (1964).
http://dx.doi.org/10.1016/0022-3115(64)90182-5
27.
27. U. Wdowik, J. Phys.: Condens. Matter. 22, 045404 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/045404
28.
28. W. Chupka, J. Berkowitz, and C. Giese, J. Chem. Phys. 30, 827 (1959).
http://dx.doi.org/10.1063/1.1730053
29.
29. K. Kelley, J. Amer. Chem. Soc. 61, 1217 (1939).
http://dx.doi.org/10.1021/ja01874a059
30.
30. A. Victor and T. Douglas, J. Res. Natl. Bur. Stand. 67A, 325 (1963).
http://dx.doi.org/10.6028/jres.067A.034
31.
31. F. Luo, Y. Cheng, L. Cai, and X. Chen, J. Appl. Phys. 113, 33517 (2013).
http://dx.doi.org/10.1063/1.4776679
32.
32. G. Slack and S. Austerman, J. Appl. Phys. 42, 4713 (1971).
http://dx.doi.org/10.1063/1.1659844
33.
33. T. Takagi, K. Matsubara, and H. Takaoka, J. Appl. Phys. 51, 5419 (1980).
http://dx.doi.org/10.1063/1.327496
34.
34. G. Morell, W. Perez, E. Ching-Prado, and R. Katiyar, Phys. Rev. B 53, 5388 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.5388
35.
35. G. Bentle, J. Am. Ceram. Soc. 49, 125 (1966).
http://dx.doi.org/10.1111/j.1151-2916.1966.tb15389.x
36.
36. C. Cline, H. Dunegan, and G. Henderson, J. Appl. Phys. 38, 1944 (1967).
http://dx.doi.org/10.1063/1.1709787
37.
37. R. Hazen and L. Finger, J. Appl. Phys. 59, 3728 (1986).
http://dx.doi.org/10.1063/1.336756
38.
38. V. Milman and M. Warren, J. Phys.: Condens. Matter 13, 241 (2001).
http://dx.doi.org/10.1088/0953-8984/13/2/302
39.
39. I. Shein, V. Kuko, Y. Makurin, M. Gorbunova, and A. Ivanovskii, Phys. Solid State 49, 1067 (2007).
http://dx.doi.org/10.1134/S106378340706008X
40.
40. C. Cline and H. Newkirk, J. Chem. Phys. 49, 3496 (1968).
http://dx.doi.org/10.1063/1.1670623
41.
41. A. Pryor, J. Nucl. Mater. 14, 258 (1964).
http://dx.doi.org/10.1016/0022-3115(64)90186-2
42.
42. E. Loh, Solid State Commun. 2, 269 (1964).
http://dx.doi.org/10.1016/0038-1098(64)90323-0
43.
43. D. Roessler and W. Walker, J. Phys. Chem. Solids 30, 157 (1969).
http://dx.doi.org/10.1016/0022-3697(69)90348-5
44.
44. J. McLeod, R. Wilks, N. Skorikov, L. Finkelstein, M. Abu-Samak, E. Kurmaev, and A. Moewes, Phys. Rev. B 81, 245123 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245123
45.
45. D. Groh, R. Pandey, M. Sahariah, E. Amzallag, I. Baraille, and M. Rerat, J. Phys. Chem. Solids 70, 789 (2009).
http://dx.doi.org/10.1016/j.jpcs.2009.03.013
46.
46. B. Ballamy, T. Baker, and D. Livey, J. Nucl. Mater. 6, 1 (1962).
http://dx.doi.org/10.1016/0022-3115(62)90210-6
47.
47. C. Cline and D. Stephens, J. Appl. Phys. 36, 2869 (1965).
http://dx.doi.org/10.1063/1.1714596
48.
48. H. Iwanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci. 35, 2451 (2000).
http://dx.doi.org/10.1023/A:1004709500331
49.
49. E. Loh, Phys. Rev. 166, 673 (1968).
http://dx.doi.org/10.1103/PhysRev.166.673
50.
50. T. Gustafsson, G. Broden, and P. Nilsson, J. Phys. F: Met. Phys. 4, 2351 (1974).
http://dx.doi.org/10.1088/0305-4608/4/12/029
51.
51. R. Dixon and L. Lott, J. Appl. Phys. 40, 4938 (1969).
http://dx.doi.org/10.1063/1.1657317
52.
52. A. Ivanovskii, I. Shein, Y. Makurin, V. Kiiko, and M. Gorbunova, Inorg. Mater. 45, 223 (2009).
http://dx.doi.org/10.1134/S0020168509030017
53.
53. Y. Xu and W. Ching, Phys. Rev. B 48, 4335 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4335
54.
54. K. Joshi, R. Jain, R. Pandya, B. Ahuja, and B. Sharma, J. Chem. Phys. 111, 163 (1999).
http://dx.doi.org/10.1063/1.479262
55.
55. D. Smith, H. Newkirk, and J. Kahn, J. Electrochem. Soc. 111, 78 (1964).
http://dx.doi.org/10.1149/1.2426067
56.
56. S. Austerman, D. Berlincourt, and H. Krueger, J. Appl. Phys. 34, 339 (1963).
http://dx.doi.org/10.1063/1.1702609
57.
57. Y. Noel, C. Zicovich-Wilson, B. Civalleri, Ph. D'Arco, and R. Dovesi, Phys. Rev. B 65, 14111 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.014111
58.
58. M. Di, E. Bersch, A. Diebold, S. Consiglio, R. Clark, G. Leusink, and T. Kaack, J. Vac. Sci. Technol. A 29, 41001 (2011).
http://dx.doi.org/10.1116/1.3597838
59.
59. H. Jin, S. Oh, J. Kang, and M. Cho, Appl. Phys. Lett. 89, 122901 (2006).
http://dx.doi.org/10.1063/1.2355453
60.
60. C. Bosio, W. Czaja, and H. Mertins, Europhys. Lett. 18, 319 (1992).
http://dx.doi.org/10.1209/0295-5075/18/4/007
61.
61. S. King, B. French, and E. Mays, J. Appl. Phys. 113, 44109 (2013).
http://dx.doi.org/10.1063/1.4788980
62.
62. B. French and S. King, J. Mater. Res. 28, 2771 (2013).
http://dx.doi.org/10.1557/jmr.2013.274
63.
63. Y. Matsuda, S. King, J. Bielefeld, J. Xu, and R. Dauskardt, Acta Mater. 60, 682 (2012).
http://dx.doi.org/10.1016/j.actamat.2011.10.014
64.
64. S. King, D. Jacob, D. Vanleuven, B. Colvin, J. Kelly, J. Bielefeld, D. Dutta, M. Liu, and D. Gidley, ECS J. Solid State Sci. Technol. 1, N115 (2012).
http://dx.doi.org/10.1149/2.021206jss
65.
65. L. Fischer, N. Wilding, M. Gel, and S. Evoy, J. Vac. Sci. Technol. B 25, 33 (2007)
http://dx.doi.org/10.1116/1.2402153
66.
66. L. Parratt, Phys. Rev. 95, 359 (1954).
http://dx.doi.org/10.1103/PhysRev.95.359
67.
67. S. King, R. Chu, G. Xu, and J. Huening, Thin Solid Films 518, 4898 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.03.031
68.
68. S. King, M. French, M. Jaehnig, M. Kuhn, B. Boyanov, and B. French, J. Vac. Sci. Technol. B 29, 51207 (2011).
http://dx.doi.org/10.1116/1.3633691
69.
69. W. A. Lanford, in Handbook of Modern Ion Beam Analysis, edited by J. Tesmer and M. Nastasi (MRS, Pittsburgh, 1995), Chap. 8.
70.
70. S. King, J. Bielefeld, M. French, and W. Lanford, J. Non-Cryst. Solids 357, 3602 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2011.07.004
71.
71. S. King et al., J. Non-Cryst. Solids 379, 67 (2013).
http://dx.doi.org/10.1016/j.jnoncrysol.2013.07.028
72.
72. B. Daly, S. Bailey, R. Sooryakumar, and S. King, J. Nanophotonics 7, 079094 (2013).
http://dx.doi.org/10.1117/1.JNP.7.073094
73.
73. Y. Lin, Y. Xiang, T. Tsui, and J. Vlassak, Acta Mater. 56, 4932 (2008).
http://dx.doi.org/10.1016/j.actamat.2008.06.007
74.
74. J. van Hemmen, S. Heil, J. Klootwijk, F. Roozeboom, C. Hodson, M. van de Sanden, and W. Kessels, J. Electrochem. Soc. 154, G165 (2007).
http://dx.doi.org/10.1149/1.2737629
75.
75. S. Potts, G. Dingemans, C. Lachaud, and W. Kessels, J. Vac. Sci. Technol. A 30, 21505 (2012).
http://dx.doi.org/10.1116/1.3683057
76.
76. J. Weber, A. Janotti, and C. Van de Walle, J. Appl. Phys. 109, 33715 (2011).
http://dx.doi.org/10.1063/1.3544310
77.
77. W. Lambrecht and B. Segall, J. Mater. Res. 7, 696 (1992).
http://dx.doi.org/10.1557/JMR.1992.0696
78.
78. M. Suleman and E. Pattinson, J. Phys. F 1, L24 (1971).
http://dx.doi.org/10.1088/0305-4608/1/4/102
79.
79. D. Fowler and J. Blakely, J. Vac. Sci. Technol. 20, 930 (1982).
http://dx.doi.org/10.1116/1.571645
80.
80. D. Fowler and J. Blakely, Surf. Sci. 148, 265 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90581-8
81.
81. V. Sashin, M. Bolorizadeh, A. Kheifets, and M. Ford, J. Phys.: Condens. Matter. 15, 3567 (2003).
http://dx.doi.org/10.1088/0953-8984/15/21/306
82.
82. C. Mallinson, J. Castle, and J. Watts, Surf. Sci. Spectra 20, 97 (2013).
http://dx.doi.org/10.1116/11.20130801
83.
83. E. LeJeune, Jr. and R. Dixon, J. Appl. Phys. 43, 1998 (1972).
http://dx.doi.org/10.1063/1.1661434
84.
84. D. Briggs and M. Seah, Practical Surface Analysis, Vol. 1—Auger and X-Ray Photoelectron Spectroscopy (Wiley, New York, 1990), p. 207.
85.
85. C. Mallinson, J. Castle, and J. Watts, Surf. Sci. Spectra 20, 86 (2013).
http://dx.doi.org/10.1116/11.20130701
86.
86. J. Yum et al., J. Cryst. Growth 334, 126 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2011.08.040
87.
87. J. Yum et al., Thin Solid Films 520, 3091 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.11.053
88.
88. R. Grundler, K. Breuer, and W. Tews, Phys. Status Solidi B 86, 329 (1978).
http://dx.doi.org/10.1002/pssb.2220860138
89.
89. L. Jenkins, D. Zehner, and M. Chung, Surf. Sci. 38, 327 (1973).
http://dx.doi.org/10.1016/0039-6028(73)90165-9
90.
90. S. Miyazaki, J. Vac. Sci. Technol. B 19, 2212 (2001).
http://dx.doi.org/10.1116/1.1418405
91.
91. M. Huang, Y. Chang, C. Chang, T. Lin, J. Kwo, T. Wu, and M. Hong, Appl. Phys. Lett. 89, 12903 (2006).
http://dx.doi.org/10.1063/1.2218826
92.
92. K. Min et al., Microelectron. Eng. 114, 121 (2014).
http://dx.doi.org/10.1016/j.mee.2013.10.003
93.
93. M. Tripp, C. Stampfer, D. Miller, T. Helbling, C. F. Herrmann, C. Hierold, K. Gall, S. George, and V. Bright, Sens. Actuators A 130, 419 (2006).
http://dx.doi.org/10.1016/j.sna.2006.01.029
94.
94. D. Venkatachalam, J. Bradby, M. Saleh, S. Ruffell, and R. Elliman, J. Appl. Phys. 110, 43527 (2011).
http://dx.doi.org/10.1063/1.3627155
95.
95. K. Tapily, J. Jakes, D. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. Elmustafa, J. Electrochem. Soc. 155, H545 (2008).
http://dx.doi.org/10.1149/1.2919106
96.
96. J. Yum, J. Oh, T. Hudnall, C. Bielawski, G. Bersuker, and S. Banerjee, Act. Passive Electron. Compon. 2012, 359580.
http://dx.doi.org/10.1155/2012/359580
97.
97. D. Johnson, J. Yum, T. Hudnall, R. Mushinski, C. Bielawski, J. Roberts, W. Wang, S. Banerjee, and H. Harris, J. Electron. Mater. 43, 151(2014).
http://dx.doi.org/10.1007/s11664-013-2754-1
98.
98. J. McPherson, Microelectron. Reliab. 52, 1753 (2012).
http://dx.doi.org/10.1016/j.microrel.2012.06.007
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/3/10.1116/1.4867436
Loading
/content/avs/journal/jvstb/32/3/10.1116/1.4867436
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/32/3/10.1116/1.4867436
2014-03-06
2016-02-10

Abstract

Beryllium oxide (BeO) is a wide band gap alkaline earth oxide material that has recently shown significant promise as a high-k dielectric material in Si and III-V metal–oxide–semiconductor field effect transistor devices. However, many of the basic material properties for BeO thin films utilized in these devices have not been reported or remain in question. In this regard, the authors report an investigation of the chemical, physical, electrical, and mechanical properties of BeO thin films formed via atomic layer deposition (ALD). Combined Rutherford backscattering and nuclear reaction analysis measurements show that ALD BeO thin films exhibit a low hydrogen content (<5%) and are nearly stoichiometric (Be/O ≅ 1.1 ± 0.05). Reflection electron energy loss spectroscopy measurements reveal a wide band gap of 8.0 ± 0.14 eV, and nanoindentation measurements show that ALD BeO has a high Young's modulus and hardness of 330 ± 30 and 33 ± 5 GPa, respectively.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/32/3/1.4867436.html;jsessionid=bgq4ql11709it.x-aip-live-06?itemId=/content/avs/journal/jvstb/32/3/10.1116/1.4867436&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd