Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. R. Udayakumar et al., Jpn. J. Appl. Phys. 46, 2180 (2007).
2. S. Mueller, S. R. Summerfelt, J. Müller, U. Schroeder, and T. Mikolajick, Electron Devices Lett. 33, 1300 (2012).
3. N. A. Pertsev, J. R. Contreras, V. G. Kukhar, B. Hermanns, H. Kohlstedt, and R. Waser, Appl. Phys. Lett. 83, 3356 (2003).
4. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, and T. Mikolajick, J. Solid State Sci. Technol. 2, N69 (2013).
5. M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, H. K. Kim, and C. S. Hwang, Appl. Phys. Lett. 102, 112914 (2013).
6. J. Wang, H. P. Li, and R. Stevens, J. Mater. Sci. 27, 5397 (1992).
7. T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, Appl. Phys. Lett. 95, 052904 (2009).
8. J. Müller et al., Microelectron. Eng. 86, 1818 (2009).
9. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).
10. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).
11. J. Müller et al., J. Appl. Phys. 110, 114113 (2011).
12. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, J. Solid State Sci. Technol. 1, N123 (2012).
13. E. H. Kisi, J. Am. Ceram. Soc. 81, 741 (1998).
14. K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006).
15. D. H. Triyoso, P. J. Tobin, B. E. White, Jr., R. Gregory, and X. D. Wang, Appl. Phys. Lett. 89, 132903 (2006).
16. K. Niwa, Y. Kotaka, M. Tomotani, H. Ashida, Y. Goto, and S. Otani, Acta Mater. 48, 4755 (2000).
17. T. Hase, T. Noguchi, K. Takemura, and Y. Miyasaka, Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics (1998), p. 7.
18. R. Bouregba, N. Sama, C. Soyer, G. Poullain, and D. Remiens, J. Appl. Phys. 107, 104102 (2010).
19. H. Fujisawa, S. Hyodo, K. Jitsui, M. Shimizu, H. Niu, H. Okino, and T. Shiosaki, Integr. Ferroelectr. 21, 107 (1998).
20. H. O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, NJ, 1996), pp. 184186.
21. J. W. Arblaster, Platinum Met. Rev. 33, 14 (1989).
22. C. B. Sawyer and C. H. Tower, Phys. Rev. 35, 269 (1930).
23. S. Bernacki et al., Integr. Ferroelectr. 3, 97 (1993).
24. A. Deshpande, R. Inman, G. Jursich, and C. G. Takoudis, J. Appl. Phys. 99, 094102 (2006).
25. M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, Appl. Phys. Lett. 102, 242905 (2013).
26. L. Chang, M. Alexe, J. F. Scott, and J. M. Gregg, Adv. Mater. 21, 4911 (2009).
27. T. Ando, Mater. 5, 478 (2012).
28. Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Springer, New York, 2004).
29. J. Müller, E. Yurchuk, T. S. Böscke, R. Hoffmann, U. Schröder, T. Mikolajick, and L. Frey, Proceedings of 17th Workshop on Dielectrics in Microelectronics (2012).
30. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, and C. S. Hwang, Appl. Phys. Lett. 104, 072901 (2014).

Data & Media loading...


Article metrics loading...



Ferroelectric HfO is an attractive candidate for future ferroelectric random access memory devices due to its compatibility with the complementary metal-oxide-semiconductor process, conformal deposition, and scaling ability. Crystallization of HfO with different dopants and annealing conditions can produce the stabilization of the monoclinic, tetragonal, cubic, or orthorhombic crystal phases. In this work, the authors observe ferroelectric behavior in Si-doped hafnium oxide with TiN and Ir electrodes. Atomic layer deposited 10 nm HfO capacitors doped with varying concentrations of SiO have been fabricated in the metal–ferroelectric–insulator–semiconductor (MFIS) structure. The ferroelectric characteristics of thin film HfO are compared in the MFIS and metal–ferroelectric–metal configurations. Post-metallization anneals were applied to all thin film ferroelectric HfO capacitors, resulting in a remanent polarization of up to 22 C/cm2 and a range of observed coercive voltages, emphasizing the importance of the annealing conditions, electrode materials, and device structure on the ferroelectric properties of thin film HfO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd