Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/32/3/10.1116/1.4873323
1.
1. K. R. Udayakumar et al., Jpn. J. Appl. Phys. 46, 2180 (2007).
http://dx.doi.org/10.1143/JJAP.46.2180
2.
2. S. Mueller, S. R. Summerfelt, J. Müller, U. Schroeder, and T. Mikolajick, Electron Devices Lett. 33, 1300 (2012).
http://dx.doi.org/10.1109/LED.2012.2204856
3.
3. N. A. Pertsev, J. R. Contreras, V. G. Kukhar, B. Hermanns, H. Kohlstedt, and R. Waser, Appl. Phys. Lett. 83, 3356 (2003).
http://dx.doi.org/10.1063/1.1621731
4.
4. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, and T. Mikolajick, J. Solid State Sci. Technol. 2, N69 (2013).
http://dx.doi.org/10.1149/2.010304jss
5.
5. M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, H. K. Kim, and C. S. Hwang, Appl. Phys. Lett. 102, 112914 (2013).
http://dx.doi.org/10.1063/1.4798265
6.
6. J. Wang, H. P. Li, and R. Stevens, J. Mater. Sci. 27, 5397 (1992).
http://dx.doi.org/10.1007/BF00541601
7.
7. T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, Appl. Phys. Lett. 95, 052904 (2009).
http://dx.doi.org/10.1063/1.3195623
8.
8. J. Müller et al., Microelectron. Eng. 86, 1818 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.076
9.
9. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).
http://dx.doi.org/10.1063/1.3634052
10.
10. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).
http://dx.doi.org/10.1002/adfm.201103119
11.
11. J. Müller et al., J. Appl. Phys. 110, 114113 (2011).
http://dx.doi.org/10.1063/1.3667205
12.
12. S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, and T. Mikolajick, J. Solid State Sci. Technol. 1, N123 (2012).
http://dx.doi.org/10.1149/2.002301jss
13.
13. E. H. Kisi, J. Am. Ceram. Soc. 81, 741 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02402.x
14.
14. K. Tomida, K. Kita, and A. Toriumi, Appl. Phys. Lett. 89, 142902 (2006).
http://dx.doi.org/10.1063/1.2355471
15.
15. D. H. Triyoso, P. J. Tobin, B. E. White, Jr., R. Gregory, and X. D. Wang, Appl. Phys. Lett. 89, 132903 (2006).
http://dx.doi.org/10.1063/1.2357032
16.
16. K. Niwa, Y. Kotaka, M. Tomotani, H. Ashida, Y. Goto, and S. Otani, Acta Mater. 48, 4755 (2000).
http://dx.doi.org/10.1016/S1359-6454(00)00268-8
17.
17. T. Hase, T. Noguchi, K. Takemura, and Y. Miyasaka, Proceedings of the Eleventh IEEE International Symposium on Applications of Ferroelectrics (1998), p. 7.
18.
18. R. Bouregba, N. Sama, C. Soyer, G. Poullain, and D. Remiens, J. Appl. Phys. 107, 104102 (2010).
http://dx.doi.org/10.1063/1.3380837
19.
19. H. Fujisawa, S. Hyodo, K. Jitsui, M. Shimizu, H. Niu, H. Okino, and T. Shiosaki, Integr. Ferroelectr. 21, 107 (1998).
http://dx.doi.org/10.1080/10584589808202055
20.
20. H. O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, NJ, 1996), pp. 184186.
21.
21. J. W. Arblaster, Platinum Met. Rev. 33, 14 (1989).
22.
22. C. B. Sawyer and C. H. Tower, Phys. Rev. 35, 269 (1930).
http://dx.doi.org/10.1103/PhysRev.35.269
23.
23. S. Bernacki et al., Integr. Ferroelectr. 3, 97 (1993).
http://dx.doi.org/10.1080/10584589308216704
24.
24. A. Deshpande, R. Inman, G. Jursich, and C. G. Takoudis, J. Appl. Phys. 99, 094102 (2006).
http://dx.doi.org/10.1063/1.2191434
25.
25. M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, Appl. Phys. Lett. 102, 242905 (2013).
http://dx.doi.org/10.1063/1.4811483
26.
26. L. Chang, M. Alexe, J. F. Scott, and J. M. Gregg, Adv. Mater. 21, 4911 (2009).
http://dx.doi.org/10.1002/adma.200901756
27.
27. T. Ando, Mater. 5, 478 (2012).
http://dx.doi.org/10.3390/ma5030478
28.
28. Nanoscale Phenomena in Ferroelectric Thin Films, edited by S. Hong (Springer, New York, 2004).
29.
29. J. Müller, E. Yurchuk, T. S. Böscke, R. Hoffmann, U. Schröder, T. Mikolajick, and L. Frey, Proceedings of 17th Workshop on Dielectrics in Microelectronics (2012).
30.
30. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, and C. S. Hwang, Appl. Phys. Lett. 104, 072901 (2014).
http://dx.doi.org/10.1063/1.4866008
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/3/10.1116/1.4873323
Loading
/content/avs/journal/jvstb/32/3/10.1116/1.4873323
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/32/3/10.1116/1.4873323
2014-04-25
2016-09-29

Abstract

Ferroelectric HfO is an attractive candidate for future ferroelectric random access memory devices due to its compatibility with the complementary metal-oxide-semiconductor process, conformal deposition, and scaling ability. Crystallization of HfO with different dopants and annealing conditions can produce the stabilization of the monoclinic, tetragonal, cubic, or orthorhombic crystal phases. In this work, the authors observe ferroelectric behavior in Si-doped hafnium oxide with TiN and Ir electrodes. Atomic layer deposited 10 nm HfO capacitors doped with varying concentrations of SiO have been fabricated in the metal–ferroelectric–insulator–semiconductor (MFIS) structure. The ferroelectric characteristics of thin film HfO are compared in the MFIS and metal–ferroelectric–metal configurations. Post-metallization anneals were applied to all thin film ferroelectric HfO capacitors, resulting in a remanent polarization of up to 22 C/cm2 and a range of observed coercive voltages, emphasizing the importance of the annealing conditions, electrode materials, and device structure on the ferroelectric properties of thin film HfO.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/32/3/1.4873323.html;jsessionid=zcylYtiYjCWYm6VTqP2lDRnC.x-aip-live-06?itemId=/content/avs/journal/jvstb/32/3/10.1116/1.4873323&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/32/3/10.1116/1.4873323&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/32/3/10.1116/1.4873323'
Right1,Right2,Right3,