Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/32/4/10.1116/1.4886364
1.
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H. Lu, Science 332, 944 (2011).
http://dx.doi.org/10.1126/science.1202992
3.
3. S. R. Forrest, Nature 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
4.
4. C. Wang, A. J. Turinske, and Y. Gao, Appl. Phys. B 113, 361 (2013).
http://dx.doi.org/10.1007/s00340-013-5498-y
5.
5. A. Hagfeldt and M. Gratzelx, Acc. Chem. Res. 33, 269 (2000).
http://dx.doi.org/10.1021/ar980112j
6.
6. M. P. Ramuz, M. Vosgueritchian, P. Wei, C. Wang, Y. Gao, Y. Wu, Y. Chen, and Z. Bao, ACS Nano 6, 10384 (2012).
http://dx.doi.org/10.1021/nn304410w
8.
8. H. Wang et al., Proc. Natl. Acad. Sci. U. S. A. 111, 4776 (2014).
http://dx.doi.org/10.1073/pnas.1320045111
9.
9. Y. Zhou et al., Adv. Mater. 26, 3767 (2014).
http://dx.doi.org/10.1002/adma.201306242
10.
10. Y. Gao, Mater. Sci. Eng., R 68, 39 (2010).
http://dx.doi.org/10.1016/j.mser.2010.01.001
11.
11. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. (published online).
http://dx.doi.org/10.1039/c4ee01138d
12.
12. C. Wang, I. Irfan, A. J. Turinske, and Y. Gao, Thin Solid Films 525, 64 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.10.065
13.
13. X. Liu, S. Yi, C. Wang, C. Wang, and Y. Gao, J. Appl. Phys. 115, 163708 (2014).
http://dx.doi.org/10.1063/1.4873959
14.
14. S. Tokito, K. Noda, and Y. Taga, J. Phys. D: Appl. Phys. 29, 2750 (1996).
http://dx.doi.org/10.1088/0022-3727/29/11/004
15.
15. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
16.
16. M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. U. S. A. 105, 2783 (2008).
17.
17. D. Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. J. Ding, Irfan, and Y. L. Gao, Appl. Phys. Lett. 95, 093304 (2009).
http://dx.doi.org/10.1063/1.3220064
18.
18. M. Kroeger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Appl. Phys. Lett. 95, 123301 (2009).
http://dx.doi.org/10.1063/1.3231928
19.
19. H. Wang, Z. Liu, M. F. Lo, T. W. Ng, C.-S. Lee, D. Yan, and S.-T. Lee, J. Appl. Phys. 107, 024510 (2010).
http://dx.doi.org/10.1063/1.3291135
20.
20. C. Wang and Y. Gao, Appl. Phys. Lett. In revision.
21.
21. C. Wang and Y. Gao, MRS Online Proc. Libr. (unpublished).
22.
22. Y. Nakayama, K. Morii, Y. Suzuki, H. Machida, S. Kera, N. Ueno, H. Kitagawa, Y. Noguchi, and H. Ishii, Adv. Funct. Mater. 19, 3746 (2009).
http://dx.doi.org/10.1002/adfm.200901022
23.
23. S. R. Hammond et al., J. Mater. Chem. 22, 3249 (2012).
http://dx.doi.org/10.1039/c2jm14911g
24.
24. M. Zhang, Irfan, H. Ding, Y. Gao, and C. W. Tang, Appl. Phys. Lett. 96, 183301 (2010).
http://dx.doi.org/10.1063/1.3415497
25.
25. M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
26.
26. M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, Nature Mater. 11, 76 (2012).
http://dx.doi.org/10.1038/nmat3159
27.
27. J. N. Yao, K. Hashimoto, and A. Fujishima, Nature 355, 624 (1992).
http://dx.doi.org/10.1038/355624a0
28.
28. P. Arnoldy, J. A. M. Vandenheijkant, G. D. Debok, and J. A. Moulijn, J. Catal. 92, 35 (1985).
http://dx.doi.org/10.1016/0021-9517(85)90235-0
29.
29. D. Y. Kim, F. So, and Y. L. Gao, Sol. Energy Mater. Sol. Cells 93, 1688 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.04.003
30.
30. Irfan, H. Ding, Y. Gao, D. Y. Kim, J. Subbiah, and F. So, Appl. Phys. Lett. 96, 243307 (2010).
http://dx.doi.org/10.1063/1.3454779
31.
31. Irfan, M. Zhang, H. Ding, C. W. Tang, and Y. Gao, Org. Electron. 12, 1588 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.007
32.
32. J. Meyer, S. Hamwi, M. Kroeger, W. Kowalsky, T. Riedl, and A. Kahn, Adv. Mater. 24, 5408 (2012).
http://dx.doi.org/10.1002/adma.201201630
33.
33. H. Lin, Irfan, W. Xia, H. N. Wu, Y. Gao, and C. W. Tang, Sol. Energy Mater. Sol. Cells 99, 349 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.01.001
34.
34. Irfan, W. Xia, H. Lin, H. Ding, C. W. Tang, and Y. Gao, Thin Solid Films 520, 1988 (2012).
http://dx.doi.org/10.1016/j.tsf.2011.08.113
35.
35. W. Chen, S. Chen, H. Huang, D. C. Qi, X. Y. Gao, and A. T. S. Wee, Appl. Phys. Lett. 92, 063308 (2008).
http://dx.doi.org/10.1063/1.2857460
36.
36. W. Chen, D. C. Qi, X. Y. Gao, and A. T. S. Wee, Prog. Surf. Sci. 84, 279 (2009).
http://dx.doi.org/10.1016/j.progsurf.2009.06.002
37.
37. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
38.
38. J. C. Bernede, S. Houari, D. Nguyen, P. Y. Jouan, A. Khelil, A. Mokrani, L. Cattin, and P. Predeep, Phys. Status Solidi A 209, 1291 (2012).
http://dx.doi.org/10.1002/pssa.201127428
39.
39. G. E. Buono-Core, G. Cabello, A. H. Klahn, A. Lucero, M. V. Nunez, B. Torrejon, and C. Castillo, Polyhedron 29, 1551 (2010).
http://dx.doi.org/10.1016/j.poly.2010.01.036
40.
40. Q. Cao, L. Yang, X. Lu, J. Mao, Y. Zhang, Y. Wu, and Y. I. Tang, J. Mater. Chem. 20, 2807 (2010).
http://dx.doi.org/10.1039/b921001f
41.
41. S. W. Cho, L. F. J. Piper, A. DeMasi, A. R. H. Preston, K. E. Smith, K. V. Chauhan, R. A. Hatton, and T. S. Jones, J. Phys. Chem. C 114, 18252 (2010).
http://dx.doi.org/10.1021/jp1071428
42.
42. B. Dasgupta et al., J. Phys. Chem. C 117, 9206 (2013).
http://dx.doi.org/10.1021/jp3114013
43.
43. Z. Deng, Z. Lu, D. Xu, J. Xiao, and Y. Wang, Solid-State Electron. 76, 25 (2012).
http://dx.doi.org/10.1016/j.sse.2012.01.004
44.
44. W. J. Dong, G. H. Jung, and J.-L. Lee, Sol. Energy Mater. Sol. Cells 116, 94 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.04.005
45.
45. S. R. Dupont, E. Voroshazi, P. Heremans, and R. H. Dauskardt, Org. Electron. 14, 1262 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.02.022
46.
46. Q. Fu, J. Chen, C. Shi, and D. Ma, ACS Appl. Mater. Interfaces 5, 6024 (2013).
http://dx.doi.org/10.1021/am4007319
47.
47. I. Gao and Y. Gao, in Organic Semiconductor Materials, Devices, and Processing 3, edited by M. J. Deen (Ecstransactions, 2011), Vol. 35, pp. 1122.
48.
48. J. Griffin, D. C. Watters, H. Yi, A. Iraqi, D. Lidzey, and A. R. Buckley, Adv. Energy Mater. 3, 903 (2013).
http://dx.doi.org/10.1002/aenm.201200886
49.
49. S. D. Ha, J. Meyer, and A. Kahn, Phys. Rev. B 82, 155434 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155434
50.
50. I. Hancox, L. A. Rochford, D. Clare, M. Walker, J. J. Mudd, P. Sullivan, S. Schumann, C. F. McConville, and T. S. Jones, J. Phys. Chem. C 117, 49 (2013).
http://dx.doi.org/10.1021/jp3075767
51.
51. S. Hoefle et al., Org. Electron. 14, 1820 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.04.017
52.
52. J. Hou, J. Wu, Z. Xie, and L. Wang, Appl. Phys. Lett. 95, 203508 (2009).
http://dx.doi.org/10.1063/1.3267084
53.
53. Irfan, H. Ding, F. So, and Y. Gaoa, J. Photonics Energy 1, 011105 (2011).
http://dx.doi.org/10.1117/1.3551497
54.
54. Irfan, F. So, and Y. Gao, Int. J. Photoenergy 2011, 314702 (2011).
http://dx.doi.org/10.1155/2011/314702
55.
55. Irfan, C. Wang, A. J. Turinske, and Y. Gao, Proc. SPIE 8476, 847616 (2012).
http://dx.doi.org/10.1117/12.927812
56.
56. I. Irfan and Y. Gao, J. Photonics Energy 2, 021213 (2012).
http://dx.doi.org/10.1117/1.JPE.2.021213
57.
57. I. Irfan, H. Lin, W. Xia, H. N. Wu, C. W. Tang, and Y. Gao, Sol. Energy Mater. Sol. Cells 105, 86 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.04.006
58.
58. I. Irfan, A. J. Turinske, Z. Bao, and Y. Gao, Appl. Phys. Lett. 101, 093305 (2012).
http://dx.doi.org/10.1063/1.4748978
59.
59. T. Itoh, I. Matsubara, W. Shin, N. Izu, and M. Nishibori, J. Ceram. Soc. Jpn. 118, 171 (2010).
http://dx.doi.org/10.2109/jcersj2.118.171
60.
60. J. J. Jasieniak, J. Seifter, J. Jo, T. Mates, and A. J. Heeger, Adv. Funct. Mater. 22, 2594 (2012).
http://dx.doi.org/10.1002/adfm.201102622
61.
61. W.-K. Kim, B. J. Song, K. Hong, K. Kim, and J.-L. Lee, J. Electrochem. Soc. 156, H674 (2009).
http://dx.doi.org/10.1149/1.3153121
62.
62. S. Kocak, F. N. Ertas, and Z. Dursun, Appl. Surf. Sci. 265, 205 (2013).
http://dx.doi.org/10.1016/j.apsusc.2012.10.170
63.
63. C. F. J. Koenig, P. Schuh, T. J. Schildhauer, and M. Nachtegaal, Chemcatchem 5, 3700 (2013).
http://dx.doi.org/10.1002/cctc.201300185
64.
64. J. Li, Q.-Y. Bao, H.-X. Wei, Z.-Q. Xu, J.-P. Yang, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, J. Mater. Chem. 22, 6285 (2012).
http://dx.doi.org/10.1039/c2jm30272a
65.
65. W. Li, S. Zhao, B. Qi, Y. Du, X. Wang, and M. Huo, Appl. Catal. B 92, 333 (2009).
http://dx.doi.org/10.1016/j.apcatb.2009.08.012
66.
66. J. Liu, X. Wu, S. Chen, X. Shi, J. Wang, S. Huang, X. Guo, and G. He, J. Mater. Chem. C 2, 158 (2014).
http://dx.doi.org/10.1039/c3tc31580k
67.
67. Z. Liu, M. G. Helander, Z. Wang, and Z. Lu, J. Phys. Chem. C 114, 16746 (2010).
http://dx.doi.org/10.1021/jp105782w
68.
68. Y.-H. Lou, M.-F. Xu, L. Zhang, Z.-K. Wang, S. Naka, H. Okada, and L.-S. Liao, Org. Electron. 14, 2698 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.07.017
69.
69. J. Meyer and A. Kahn, J. Photonics Energy 1, 011109 (2011).
http://dx.doi.org/10.1117/1.3555081
70.
70. J. Meyer, A. Shu, M. Kroeger, and A. Kahn, Appl. Phys. Lett. 96, 133308 (2010).
http://dx.doi.org/10.1063/1.3374333
71.
71. A. V. Murugan, A. K. Viswanath, C. S. Gopinath, and K. Vijayamohanan, J. Appl. Phys. 100, 074319 (2006).
http://dx.doi.org/10.1063/1.2356788
72.
72. N. Oka, H. Watanabe, Y. Sato, H. Yamaguchi, N. Ito, H. Tsuji, and Y. Shigesato, J. Vac. Sci. Technol., A 28, 886 (2010).
http://dx.doi.org/10.1116/1.3328822
73.
73. K.-L. Ou, D. Tadytin, K. X. Steirer, D. Placencia, M. Nguyen, P. Lee, and N. R. Armstrong, J. Mater. Chem. A 1, 6794 (2013).
http://dx.doi.org/10.1039/c3ta10894e
74.
74. T. A. Papadopoulos, J. Meyer, H. Li, Z. Guan, A. Kahn, and J.-L. Bredas, Adv. Funct. Mater. 23, 6091 (2013).
http://dx.doi.org/10.1002/adfm.201301466
75.
75. G. Papakonstantinou, F. Paloukis, A. Siokou, and S. G. Neophytides, J. Electrochem. Soc. 154, B989 (2007).
http://dx.doi.org/10.1149/1.2761319
76.
76. W. Qin, X. Xu, D. Liu, C. Ma, L. Yang, S. Yin, F. Zhang, and J. Wei, J. Renewable Sustainable Energy 5, 5 (2013).
http://dx.doi.org/10.1063/1.4821219
77.
77. S. Rajagopal, D. Nataraj, O. Y. Khyzhun, Y. Djaoued, J. Robichaud, and C.-K. Kim, Mater. Chem. Phys. 141, 383 (2013).
http://dx.doi.org/10.1016/j.matchemphys.2013.05.028
78.
78. S. Rajagopal, D. Nataraj, O. Y. Khyzhun, Y. Djaoued, J. Robichaud, K. Senthil, and D. Mangalaraj, Crystengcomm 13, 2358 (2011).
http://dx.doi.org/10.1039/c0ce00303d
79.
79. V. S. Saji and C.-W. Lee, Chemsuschem 5, 1146 (2012).
http://dx.doi.org/10.1002/cssc.201100660
80.
80. X.-B. Shi, M.-F. Xu, D.-Y. Zhou, Z.-K. Wang, and L.-S. Liao, Appl. Phys. Lett. 102, 23 (2013).
81.
81. C. E. Song et al., Chemsuschem 6, 1445 (2013).
http://dx.doi.org/10.1002/cssc.201300240
82.
82. S.-H. Su, C.-C. Hou, J.-S. Tsai, and M. Yokoyama, Thin Solid Films 517, 5293 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.142
83.
83. J. Subbiah, C. M. Amb, I. Irfan, Y. Gao, J. R. Reynolds, and F. So, ACS Appl. Mater. Interfaces 4, 866 (2012).
http://dx.doi.org/10.1021/am201537p
84.
84. F. X. Wang, X. F. Qiao, T. Xiong, and D. G. Ma, Org. Electron. 9, 985 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.07.009
85.
85. Q. Wang, G. Williams, and H. Aziz, Org. Electron. 13, 2075 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.06.017
86.
86. S. Wang, Q. Gao, Y. Zhang, J. Gao, X. Sun, and Y. Tang, Chem. - Eur. J. 17, 1465 (2011).
http://dx.doi.org/10.1002/chem.201002750
87.
87. Y.-Z. Wang, M. Yang, D.-C. Qi, S. Chen, W. Chen, A. T. S. Wee, and X.-Y. Gao, J. Chem. Phys. 134, 034706 (2011).
http://dx.doi.org/10.1063/1.3546034
88.
88. G. Williams, Q. Wang, and H. Aziz, Adv. Funct. Mater. 23, 2239 (2013).
http://dx.doi.org/10.1002/adfm.201202567
89.
89. T. Xiao, W. Cui, M. Cai, W. Leung, J. W. Anderegg, J. Shinar, and R. Shinar, Org. Electron. 14, 267 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.10.020
90.
90. M.-F. Xu, L.-S. Cui, X.-Z. Zhu, C.-H. Gao, X.-B. Shi, Z.-M. Jin, Z.-K. Wang, and L.-S. Liao, Org. Electron. 14, 657 (2013).
http://dx.doi.org/10.1016/j.orgel.2012.12.016
91.
91. L. L. Yan, C. B. Wang, W. Yue, and B. Xu, in Manufacturing Engineering and Automation Ii, edited by L. C. Zhang, C. L. Zhang, J. H. Horng, and Z. Chen (Trans Tech Publications, 2012), Vol. 591–593, pp. 10541057.
92.
92. C. Yao, X. Xu, J. Wang, L. Shi, and L. Li, ACS Appl. Mater. Interfaces 5, 1100 (2013).
http://dx.doi.org/10.1021/am302878m
93.
93. Y. Yi, P. E. Jeon, H. Lee, K. Han, H. S. Kim, K. Jeong, and S. W. Cho, J. Chem. Phys. 130, 094704 (2009).
http://dx.doi.org/10.1063/1.3077289
94.
94. M. Yuan, S. Wang, X. Wang, L. Zhao, and T. Hao, Appl. Surf. Sci. 257, 7913 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.03.044
95.
95. S. Zhao, J. Li, L. Wang, and X. Wang, Clean: Soil, Air, Water 38, 268 (2010).
96.
96. J. Q. Zhong, H. Y. Mao, R. Wang, J. D. Lin, Y. B. Zhao, J. L. Zhang, D. G. Ma, and W. Chen, Org. Electron. 13, 2793 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.07.048
97.
97. J. Zhou, Y. Hao, X. Yu, N. Zhou, and H. Lin, J. Phys. D: Appl. Phys. 46, 38 (2013).
98.
98. H. Wang, E. D. Gomez, Z. Guan, C. Jaye, M. F. Toney, D. A. Fischer, A. Kahn, and Y.-L. Loo, J. Phys. Chem. C 117, 20474 (2013).
http://dx.doi.org/10.1021/jp406625e
99.
99. Y. Kinoshita, R. Takenaka, and H. Murata, Appl. Phys. Lett. 92, 243309 (2008).
http://dx.doi.org/10.1063/1.2949321
100.
100. M. Anwar, C. A. Hogarth, and R. Bulpett, J. Mater. Sci. 25, 1784 (1990).
http://dx.doi.org/10.1007/BF01045385
101.
101. M. Vasilopoulou et al., Appl. Phys. Lett. 98, 123301 (2011).
http://dx.doi.org/10.1063/1.3557502
102.
102. M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, and Z. H. Lu, Appl. Phys. Lett. 96, 213302 (2010).
http://dx.doi.org/10.1063/1.3432447
103.
103. V. Bhosle, A. Tiwari, and J. Narayan, J. Appl. Phys. 97, 083539 (2005).
http://dx.doi.org/10.1063/1.1868852
104.
104. I. Irfan, Ph.D. thesis (University of Rochester, 2012).
105.
105. I. G. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00449-9
106.
106. I. Irfan, S. Graber, F. So, and Y. Gao, Org. Electron. 13, 2028 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.036
107.
107. X. M. Ding, L. M. Hung, L. F. Cheng, Z. B. Deng, X. Y. Hou, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 76, 2704 (2000).
http://dx.doi.org/10.1063/1.126449
108.
108. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng., R 64, 1 (2009).
http://dx.doi.org/10.1016/j.mser.2008.12.001
109.
109. Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, Appl. Phys. Lett. 68, 2699 (1996).
http://dx.doi.org/10.1063/1.116313
110.
110. W. Y. Gao and A. Kahn, J. Appl. Phys. 94, 359 (2003).
http://dx.doi.org/10.1063/1.1577400
111.
111. J. Hwang, E.-G. Kim, J. Liu, J.-L. Bredas, A. Duggal, and A. Kahn, J. Phys. Chem. C 111, 1378 (2007).
http://dx.doi.org/10.1021/jp067004w
112.
112. S. Braun, W. Osikowicz, Y. Wang, and W. R. Salaneck, Org. Electron. 8, 14 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.10.006
113.
113. V. Podzorov, S. E. Sysoev, E. Loginova, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003).
http://dx.doi.org/10.1063/1.1622799
114.
114. S. J. Yoon, J. H. Park, H. K. Lee, and O. O. Park, Appl. Phys. Lett. 92, 143504 (2008).
http://dx.doi.org/10.1063/1.2908035
115.
115. J. Meyer, R. Khalandovsky, P. Goerrn, and A. Kahn, Adv. Mater. 23, 70 (2011).
http://dx.doi.org/10.1002/adma.201003065
116.
116. T. Matsushima, G. H. Jin, Y. Kanai, T. Yokota, S. Kitada, T. Kishi, and H. Murata, Org. Electron. 12, 520 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.001
117.
117. T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
http://dx.doi.org/10.1063/1.2825275
118.
118. P. S. Wang, Y. Y. Lo, W. H. Tseng, M. H. Chen, and C. I. Wu, J. Appl. Phys. 114, 063710 (2013).
http://dx.doi.org/10.1063/1.4817423
119.
119. H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 94, 243302 (2009).
http://dx.doi.org/10.1063/1.3154556
120.
120. C. Wang, Irfan, and Y. Gao, MRS proc. 1493, 287 (2013).
121.
121. P. Dannetun, M. Fahlman, C. Fauquet, K. Kaerijama, Y. Sonoda, R. Lazzaroni, J. L. Bredas, and W. R. Salaneck, Syn. Met. 67, 133 (1994).
http://dx.doi.org/10.1016/0379-6779(94)90026-4
122.
122. K. Seki, T. Tani, and H. Ishii, Thin Solid Films 273, 20 (1996).
http://dx.doi.org/10.1016/0040-6090(95)06765-5
123.
123. W. R. Salaneck, Philos. Trans. R. Soc. London, Ser. A 355, 789 (1997).
http://dx.doi.org/10.1098/rsta.1997.0044
124.
124. T. Osada, P. Barta, N. Johansson, T. Kugler, P. Broms, and W. R. Salaneck, Syn. Met. 102, 1103 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)01387-3
125.
125. R. Schlaf, C. D. Merritt, L. A. Crisafulli, and Z. H. Kafafi, J. Appl. Phys. 86, 5678 (1999).
http://dx.doi.org/10.1063/1.371578
126.
126. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch, and J. Fink, Appl. Phys. Lett. 83, 3930 (2003).
http://dx.doi.org/10.1063/1.1622783
127.
127. L. Yan, N. J. Watkins, C. W. Tang, and Y. L. Gao, Syn. Met. 137, 1037 (2003).
http://dx.doi.org/10.1016/S0379-6779(02)00893-7
128.
128. H. Ishii, N. Hayashi, E. Ito, Y. Washizu, K. Sugi, Y. Kimura, M. Niwano, Y. Ouchi, and K. Seki, Phys. Status Solidi A 201, 1075 (2004).
http://dx.doi.org/10.1002/pssa.200404346
129.
129. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch, and J. Fink, Surf. Sci. 566, 554 (2004).
http://dx.doi.org/10.1016/j.susc.2004.05.108
130.
130. A. Vollmer et al., Eur. Phys. J. E 17, 339 (2005).
http://dx.doi.org/10.1140/epje/i2005-10012-0
131.
131. H. J. Ding and Y. L. Gao, Appl. Surf. Sci. 252, 3943 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.09.071
132.
132. C. I. Wu, C. T. Lin, Y. H. Chen, M. H. Chen, Y. J. Lu, and C. C. Wu, Appl. Phys. Lett. 88, 152104 (2006).
http://dx.doi.org/10.1063/1.2192982
133.
133. H. Benmansour, F. A. Castro, M. Nagel, J. Heier, R. Hany, and F. Nuesch, Chimia 61, 787 (2007).
http://dx.doi.org/10.2533/chimia.2007.787
134.
134. W. Chen, X. Y. Gao, D. C. Qi, S. Chen, Z. K. Chen, and A. T. S. Wee, Adv. Funct. Mater. 17, 1339 (2007).
http://dx.doi.org/10.1002/adfm.200601029
135.
135. H. Ding and Y. Gao, Appl. Phys. Lett. 91, 142112 (2007).
http://dx.doi.org/10.1063/1.2784944
136.
136. G. Paasch and S. Scheinert, J. Appl. Phys. 101, 024514 (2007).
http://dx.doi.org/10.1063/1.2424397
137.
137. D. S. Leem, S. Y. Kim, J. J. Kim, M. H. Chen, and C. I. Wu, Electrochem. Solid State Lett. 12, J8 (2009).
http://dx.doi.org/10.1149/1.3007239
138.
138. L. Yan, M. G. Mason, C. W. Tang, and Y. L. Gao, Appl. Surf. Sci. 175, 412 (2001).
http://dx.doi.org/10.1016/S0169-4332(01)00089-7
139.
139. L. Yan, N. J. Watkins, S. Zorba, Y. L. Gao, and C. W. Tang, Appl. Phys. Lett. 79, 4148 (2001).
http://dx.doi.org/10.1063/1.1426260
140.
140. Y. L. Gao and L. Yan, Chem. Phys. Lett. 380, 451 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.012
141.
141. H. J. Ding and Y. L. Gao, Appl. Phys. Lett. 87, 051918 (2005).
http://dx.doi.org/10.1063/1.2007858
142.
142. B. H. Hamadani, H. Ding, Y. Gao, and D. Natelson, Phys. Rev. B 72, 235302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.235302
143.
143. H. Ding and Y. Gao, Appl. Phys. Lett. 91, 172107 (2007).
http://dx.doi.org/10.1063/1.2800820
144.
144. H. J. Dinga and Y. L. Gao, J. Appl. Phys. 102, 043703 (2007).
http://dx.doi.org/10.1063/1.2769952
145.
145. H. J. Ding, K. W. Park, K. Green, and Y. L. Gao, Chem. Phys. Lett. 454, 229 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.02.015
146.
146. H. J. Ding and Y. L. Gao, Appl. Phys. Lett. 92, 053309 (2008).
http://dx.doi.org/10.1063/1.2842384
147.
147. H. J. Ding, S. Zorba, Y. L. Gao, L. P. Ma, and Y. Yang, J. Appl. Phys. 100, 113706 (2006).
http://dx.doi.org/10.1063/1.2397292
148.
148. F. M. Avendano, E. W. Forsythe, Y. L. Gao, and C. W. Tang, Syn. Met. 102, 910 (1999).
http://dx.doi.org/10.1016/S0379-6779(98)00951-5
149.
149. H. J. Ding and Y. L. Gao, Appl. Phys. Lett. 86, 213508 (2005).
http://dx.doi.org/10.1063/1.1935750
150.
150. M. G. Mason et al., J. Appl. Phys. 89, 2756 (2001).
http://dx.doi.org/10.1063/1.1324681
151.
151. S. L. Hellstrom et al., Nano Lett. 12, 3574 (2012).
http://dx.doi.org/10.1021/nl301207e
152.
152. M. T. Greiner, L. Chai, M. G. Helander, W.-M. Tang, and Z.-H. Lu, Adv. Funct. Mater. 23, 215 (2013).
http://dx.doi.org/10.1002/adfm.201200993
153.
153. M. T. Greiner and Z.-H. Lu, Npg Asia Mater. 5, e55 (2013).
http://dx.doi.org/10.1038/am.2013.29
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/32/4/10.1116/1.4886364
Loading
/content/avs/journal/jvstb/32/4/10.1116/1.4886364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/32/4/10.1116/1.4886364
2014-07-15
2016-12-05

Abstract

Extensive studies have been conducted on molybdenum oxide since it has outstanding properties as an insertion layer for efficient charge injection and extraction in organic semiconductor devices. Efficient charge transfer at semiconductor and electrode interface is one of the most crucial issues for the performance of organic electronic device. A lot of efforts have been spent to address this issue, but there are still many unclarified issues to understand the physical mechanisms. In this review, the authors summarize surface analytical investigations on the mechanisms that govern the effectiveness of the insertion layer. Measurement results on the electronic structure, composition, and morphology are presented. It is found that the high work function of MoO is the dominant factor for the device performance improvement. Compromising environmental effects and methods to recover or prevent such effects are described. Finally, the criteria for MoO insertion layer to be effective are provided by comparing the work function of MoO and the ionization potential of organic semiconductors.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/32/4/1.4886364.html;jsessionid=Ym6Qs8ov4u-oWvKlxkQmB_9F.x-aip-live-06?itemId=/content/avs/journal/jvstb/32/4/10.1116/1.4886364&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/32/4/10.1116/1.4886364&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/32/4/10.1116/1.4886364'
Right1,Right2,Right3,