Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Koop, M. Zech, K. Karrai, D. Schnurbusch, M. Mueller, and A. Holleitner, J. Vac. Sci. Technol., B 28, 802 (2010).
2. R. Saive, M. Scherer, C. Mueller, D. Daume, J. Schinke, M. Kroeger, and W. Kowalsky, Adv. Funct. Mater. 23, 5854 (2013).
3. I. Joachimsthaler, R. Heiderhoff, and L. J. Balk, Meas. Sci. Technol. 14, 87 (2003).
4. M. Troyon, H. N. Lei, Z. Wang, and G. Shang, Microsc. Microanal. Microstruct. 8, 393 (1997).
5. S. Gsell, M. Schreck, G. Benstetter, E. Lodermeier, and B. Stritzker, Diamond Relat. Mater. 16, 665 (2007).
6. X. Qian, J. Villarrubia, F. Tian, and R. Dixson, Proc. SPIE 6518, 651811 (2007).
7. L. Vazquez, A. Bartolome, R. Garcia, A. Buendia, and A. M. Baro, Rev. Sci. Instrum. 59, 1286 (1988).
8. E. E. Ehrichs, W. F. Smith, and A. L. de Lozanne, J. Vac. Sci. Technol., B 9, 1380 (1991).
9. U. Stahl, C. W. Yuan, A. L. de Lozanne, and M. Tortonese, Appl. Phys. Lett. 65, 2878 (1994).
10.See supplementary material at for movies, in WMV format, corresponding to Fig. 3 and 4 in the paper.[Supplementary Material]
11. M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).
12. W. Rong, W. Ding, L. Madler, R. S. Ruoff, and S. K. Friedlander, Nano Lett. 6, 2646 (2006).
13. K. Enomoto, S. Kitakata, T. Yasuhara, N. Ohtake, T. Kuzumaki, and Y. Mitsuda, Appl. Phys. Lett. 88, 153115 (2006).
14. S. Matthias, Biological Micro- and Nanotribology: Nature's Solutions ( Springer, Berlin, 2001).
15. T. R. Albrecht, P. Grutter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).
16. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis ( Springer, Berlin, 1998).

Data & Media loading...


Article metrics loading...



A newly designed atomic force microscope (referred to as “cross-sectional AFM” or “xAFM”) is demonstrated that enables tip–sample interactions to be studied directly from a cross-sectional scanning electron microscope (SEM) view during AFM operation. Previously, such interactions have only been modeled using computer simulations or sensor-generating data. The xAFM will allow researchers to acquire additional visual information not available with conventional microscopic techniques. The xAFM is operated in a tungsten filament SEM, by examining a grating sample that is cleaved and mounted on the sample scanner so that the cleaved cross section faces upwards toward the bottom of the electron column. The tip scans horizontally, parallel to and at a height slightly lower than the cross-sectional surface of the sample but within the depth of focus of the SEM. Three experiments are described that show the unique features of the xAFM. The first demonstrates direct observation of the “tip-convolution” in real-time SEM images. The second shows unambiguous identification of an artifact in the lateral force microscope, from which a “double dip” appears in the signal from a damaged tip in a backward scan of the grating surface. The third enables measurements from blurred SEM images of large-amplitude oscillating high-Q AFM cantilevers in vacuum.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd