Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/33/2/10.1116/1.4906331
1.
1. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
2.
2. S. Najmaei et al., Nat. Mater. 12, 754 (2013).
http://dx.doi.org/10.1038/nmat3673
3.
3. H. Liu, M. Si, S. Najmaei, A. T. Neal, Y. Du, P. M. Ajayan, J. Lou, and P. D. Ye, Nano Lett. 13, 2640 (2013).
http://dx.doi.org/10.1021/nl400778q
4.
4. A. M. van der Zande et al., Nat. Mater. 12, 554 (2013).
http://dx.doi.org/10.1038/nmat3633
5.
5. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
6.
6. W. Zhou et al., Nano Lett. 13, 2615 (2013).
http://dx.doi.org/10.1021/nl4007479
7.
7. X. Zou, Y. Liu, and B. I. Yakobson, Nano Lett. 13, 253 (2013).
http://dx.doi.org/10.1021/nl3040042
8.
8. S. Ghatak, A. N. Pal, and A. Ghosh, ACS Nano 5, 7707 (2011).
http://dx.doi.org/10.1021/nn202852j
9.
9. C. Durand, M. Berthe, Y. Makoudi, J.-P. Nys, R. Leturcq, P. Caroff, and B. Grandidier, Nanotechnology 24, 275706 (2013).
http://dx.doi.org/10.1088/0957-4484/24/27/275706
10.
10. S. Mathew et al., Appl. Phys. Lett. 101, 102103 (2012).
http://dx.doi.org/10.1063/1.4750237
11.
11. T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, and T. Lee, ACS Nano 8, 2774 (2014).
http://dx.doi.org/10.1021/nn4064924
12.
12. H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. Lett. 109, 035503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.035503
13.
13. X. Liu et al., Nat. Commun. 4, 1776 (2013).
http://dx.doi.org/10.1038/ncomms2803
14.
14. H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. B 88, 035301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035301
15.
15. T.-H. Kim, Z. Wang, J. F. Wendelken, H. H. Weitering, W. Li, and A.-P. Li, Rev. Sci. Instrum. 78, 123701 (2007).
http://dx.doi.org/10.1063/1.2821610
16.
16. A.-P. Li, K. W. Clark, X. G. Zhang, and A. P. Baddorf, Adv. Funct. Mater. 23, 2509 (2013).
http://dx.doi.org/10.1002/adfm.201203423
17.
17. H. Qiu et al., Nat. Commun. 4, 2642 (2013).
http://dx.doi.org/10.1038/ncomms3642
18.
18. J. D. Fuhr, A. Saúl, and J. O. Sofo, Phys. Rev. Lett. 92, 026802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.026802
19.
19. S. Qin, T.-H. Kim, Z. Wang, and A.-P. Li, Rev. Sci. Instrum. 83, 063704 (2012).
http://dx.doi.org/10.1063/1.4727878
20.
20. K. W. Clark, X. G. Zhang, I. V. Vlassiouk, G. He, R. M. Feenstra, and A.-P. Li, ACS Nano 7, 7956 (2013).
http://dx.doi.org/10.1021/nn403056k
21.
21. A. Botman, J. J. L. Mulders, and C. W. Hagen, Nanotechnology 20, 372001 (2009).
http://dx.doi.org/10.1088/0957-4484/20/37/372001
22.
22. S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
23.
23. N. A. Roberts, J. D. Fowlkes, G. A. Magel, and P. D. Rack, Nanoscale 5, 408 (2013).
http://dx.doi.org/10.1039/c2nr33014h
24.
24. S. Tongay et al., Nano Lett. 13, 2831 (2013).
http://dx.doi.org/10.1021/nl4011172
25.
25. R. Yang, X. Zheng, Z. Wang, C. J. Miller, and P. X.-L. Feng, J. Vac. Sci. Technol., B 32, 061203 (2014).
http://dx.doi.org/10.1116/1.4898117
26.
26. S. M. Sze, Physics of Semiconductor Devices ( Wiley, New York, 1981).
27.
27. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
28.
28. A. R. Völkel, R. A. Street, and D. Knipp, Phys. Rev. B 66, 195336 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195336
29.
29. B. Radisavljevic and A. Kis, Nat. Mater. 12, 815 (2013).
http://dx.doi.org/10.1038/nmat3687
30.
30. W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, Nat. Commun. 5, 3087 (2014).
http://dx.doi.org/10.1038/ncomms4087
31.
31. D. Jariwala, V. K. Sangwan, D. J. Late, J. E. Johns, V. P. Dravid, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Appl. Phys. Lett. 102, 173107 (2013).
http://dx.doi.org/10.1063/1.4803920
32.
32. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 85, 115317 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115317
33.
33. R. F. Egerton, P. Li, and M. Malac, Micron 35, 399 (2004).
http://dx.doi.org/10.1016/j.micron.2004.02.003
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/33/2/10.1116/1.4906331
Loading
/content/avs/journal/jvstb/33/2/10.1116/1.4906331
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/33/2/10.1116/1.4906331
2015-01-16
2016-09-29

Abstract

The authors study the electrical transport properties of atomically thin individual crystalline grains of MoS with four-probe scanning tunneling microscopy. The monolayer MoS domains are synthesized by chemical vapor deposition on SiO/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carrier density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS. Our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/33/2/1.4906331.html;jsessionid=cgCbOucN6gvMYH3sDOwH4CUc.x-aip-live-02?itemId=/content/avs/journal/jvstb/33/2/10.1116/1.4906331&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/33/2/10.1116/1.4906331&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/33/2/10.1116/1.4906331'
Right1,Right2,Right3,