Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Gao, M. Gratzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
2. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8, 506 (2014).
3. H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
4. T. C. Sum and N. Mathews, Energy Environ. Sci. 7, 2518 (2014).
5. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13, 476 (2014).
6. F. Deschler et al., J. Phys. Chem. Lett. 5, 1421 (2014).
7. Z.-K. Tan et al., Nat. Nanotechnol. 9, 687 (2014).
8. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Nano Lett. 14, 5995 (2014).
9. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, ACS Nano 8, 10947 (2014).
10. C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, Vacuum 86, 1014 (2012).
11. C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photonics 4, 379 (2012).
12. D. Shi et al., Science 347, 519 (2015).
13. D. Santamore, K. Edinger, J. Orloff, and J. Melngailis, J. Vac. Sci. Technol. B 15, 2346 (1997).
14. A. A. Tseng, I. A. Insua, J. S. Park, B. Li, and G. P. Vakanas, J. Vac. Sci. Technol. B 22, 82 (2004).
15. O. Wilhelmi, S. Reyntjens, D. Wall, R. Geurts, C. Jiao, and L. Roussel, International Conference on Micro- and Nano-Engineering, Barcelona (2006).
16. A. Lugstein, B. Basnar, and E. Bertagnolli, J. Vac. Sci. Technol. B 20, 2238 (2002).
17. M. Catalano, A. Taurino, M. Lomascolo, A. Schertel, and A. Orchowski, Nanotechnology 17, 1758 (2006).
18. D. Z. Xie, B. K. A. Ngoi, Y. Q. Fu, A. S. Ong, and B. H. Lim, Appl. Surf. Sci. 225, 54 (2004).
19. C. Lehrer, L. Frey, S. Petersen, and H. Ryssel, J. Vac. Sci. Technol. B 19, 2533 (2001).
20. A. Surpi, S. Valizadeh, K. Leifer, and S. Lagomarsino, J. Micromech. Microeng. 17, 617 (2007).
21. T. J. Stark, G. M. Shedd, J. Vitarelli, D. P. Griffis, and P. E. Russell, J. Vac. Sci. Technol. B 13, 2565 (1995).
22. Y-N. Chyr, “ The photonic applications of focused ion beam micromachining on GaN,” Ph.D. thesis ( University of Cincinnati, 2001).
23. X. Duan, G. Zhou, Y. Huang, Y. Shang, and X. Ren, Opt. Express 23, 2639 (2015).

Data & Media loading...


Article metrics loading...



The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 m3/pC for the MAPbBr perovskite crystal. Using XeF for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd