Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/33/5/10.1116/1.4927542
1.
1. P. Gao, M. Gratzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014).
http://dx.doi.org/10.1039/C4EE00942H
2.
2. M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8, 506 (2014).
http://dx.doi.org/10.1038/nphoton.2014.134
3.
3. H. J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).
http://dx.doi.org/10.1021/jz4020162
4.
4. T. C. Sum and N. Mathews, Energy Environ. Sci. 7, 2518 (2014).
http://dx.doi.org/10.1039/C4EE00673A
5.
5. G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13, 476 (2014).
http://dx.doi.org/10.1038/nmat3911
6.
6. F. Deschler et al., J. Phys. Chem. Lett. 5, 1421 (2014).
http://dx.doi.org/10.1021/jz5005285
7.
7. Z.-K. Tan et al., Nat. Nanotechnol. 9, 687 (2014).
http://dx.doi.org/10.1038/nnano.2014.149
8.
8. Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Nano Lett. 14, 5995 (2014).
http://dx.doi.org/10.1021/nl503057g
9.
9. B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, ACS Nano 8, 10947 (2014).
http://dx.doi.org/10.1021/nn504856g
10.
10. C.-S. Kim, S.-H. Ahn, and D.-Y. Jang, Vacuum 86, 1014 (2012).
http://dx.doi.org/10.1016/j.vacuum.2011.11.004
11.
11. C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photonics 4, 379 (2012).
http://dx.doi.org/10.1364/AOP.4.000379
12.
12. D. Shi et al., Science 347, 519 (2015).
http://dx.doi.org/10.1126/science.aaa2725
13.
13. D. Santamore, K. Edinger, J. Orloff, and J. Melngailis, J. Vac. Sci. Technol. B 15, 2346 (1997).
http://dx.doi.org/10.1116/1.589643
14.
14. A. A. Tseng, I. A. Insua, J. S. Park, B. Li, and G. P. Vakanas, J. Vac. Sci. Technol. B 22, 82 (2004).
http://dx.doi.org/10.1116/1.1640396
15.
15. O. Wilhelmi, S. Reyntjens, D. Wall, R. Geurts, C. Jiao, and L. Roussel, International Conference on Micro- and Nano-Engineering, Barcelona (2006).
16.
16. A. Lugstein, B. Basnar, and E. Bertagnolli, J. Vac. Sci. Technol. B 20, 2238 (2002).
http://dx.doi.org/10.1116/1.1517261
17.
17. M. Catalano, A. Taurino, M. Lomascolo, A. Schertel, and A. Orchowski, Nanotechnology 17, 1758 (2006).
http://dx.doi.org/10.1088/0957-4484/17/6/036
18.
18. D. Z. Xie, B. K. A. Ngoi, Y. Q. Fu, A. S. Ong, and B. H. Lim, Appl. Surf. Sci. 225, 54 (2004).
http://dx.doi.org/10.1016/j.apsusc.2003.09.031
19.
19. C. Lehrer, L. Frey, S. Petersen, and H. Ryssel, J. Vac. Sci. Technol. B 19, 2533 (2001).
http://dx.doi.org/10.1116/1.1417553
20.
20. A. Surpi, S. Valizadeh, K. Leifer, and S. Lagomarsino, J. Micromech. Microeng. 17, 617 (2007).
http://dx.doi.org/10.1088/0960-1317/17/3/026
21.
21. T. J. Stark, G. M. Shedd, J. Vitarelli, D. P. Griffis, and P. E. Russell, J. Vac. Sci. Technol. B 13, 2565 (1995).
http://dx.doi.org/10.1116/1.588395
22.
22. Y-N. Chyr, “ The photonic applications of focused ion beam micromachining on GaN,” Ph.D. thesis ( University of Cincinnati, 2001).
23.
23. X. Duan, G. Zhou, Y. Huang, Y. Shang, and X. Ren, Opt. Express 23, 2639 (2015).
http://dx.doi.org/10.1364/OE.23.002639
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/33/5/10.1116/1.4927542
Loading
/content/avs/journal/jvstb/33/5/10.1116/1.4927542
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/33/5/10.1116/1.4927542
2015-07-30
2016-09-30

Abstract

The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 m3/pC for the MAPbBr perovskite crystal. Using XeF for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/33/5/1.4927542.html;jsessionid=9RY4QaHkgUKE5ipttTBjywmm.x-aip-live-06?itemId=/content/avs/journal/jvstb/33/5/10.1116/1.4927542&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/33/5/10.1116/1.4927542&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/33/5/10.1116/1.4927542'
Right1,Right2,Right3,