Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/34/2/10.1116/1.4938157
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. L. Britnell et al., Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
3.
3. H. Yang et al., Science 336, 1140 (2012).
http://dx.doi.org/10.1126/science.1220527
4.
4. L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).
http://dx.doi.org/10.1038/ncomms2817
5.
5. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
http://dx.doi.org/10.1021/nl801827v
6.
6. D. C. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).
http://dx.doi.org/10.1021/nl803279t
7.
7. W. Yang et al., Nat. Mater. 12, 792 (2013).
http://dx.doi.org/10.1038/nmat3695
8.
8. C. Berger et al., J. Phys. Chem. B 108, 19912 (2004).
http://dx.doi.org/10.1021/jp040650f
9.
9. W. A. de Heer et al., Solid State Commun. 143, 92 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.04.023
10.
10. G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth, and G. Lupina, Phys. Status Solidi B 248, 2619 (2011).
http://dx.doi.org/10.1002/pssb.201100052
11.
11. J. Park, W. C. Mitchel, L. Grazulis, H. E. Smith, K. G. Eyink, J. J. Boeckl, D. H. Tomich, S. D. Pacley, and J. E. Hoelscher, Adv. Mater. 22, 4140 (2010).
http://dx.doi.org/10.1002/adma.201000756
12.
12. J. M. Garcia et al., Solid State Commun. 152 975 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.005
13.
13. M. H. Oliveira et al., Carbon 56, 339 (2013).
http://dx.doi.org/10.1016/j.carbon.2013.01.032
14.
14. E. Moreau, F. J. Ferrer, D. Vignaud, S. Godey, and X. Wallart, Phys. Status Solidi A 207, 300 (2010).
http://dx.doi.org/10.1002/pssa.200982412
15.
15. U. Wurstbauer et al., Carbon 50, 4822 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.06.008
16.
16. J. Dabrowski, G. Lippert, T. Schroeder, and G. Lupina, Appl. Phys. Lett. 105, 191610 (2014).
http://dx.doi.org/10.1063/1.4901161
17.
17. T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.12.061
18.
18. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.02.003
19.
19. D. S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, Nano Lett. 8, 4320 (2008).
http://dx.doi.org/10.1021/nl802156w
20.
20. D. Lenski and M. S. Fuhrer, J. Appl. Phys. 110, 013720 (2011).
http://dx.doi.org/10.1063/1.3605545
21.
21. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 3925 (2012).
http://dx.doi.org/10.1021/nl300901a
22.
22. H. Huang, W. Chen, S. Chen, and A. T. S. Wee, ACS Nano 2, 2513 (2008).
http://dx.doi.org/10.1021/nn800711v
23.
23. L. G. Cancado et al., Nano Lett. 11, 3190 (2011).
http://dx.doi.org/10.1021/nl201432g
24.
24. S. K. Jerng et al., J. Phys. Chem. C 115, 4491 (2011).
http://dx.doi.org/10.1021/jp110650d
25.
25. F. J. Nelson, V. K. Kamineni, T. Zhang, E. S. Comfort, J. U. Lee, and A. C. Diebold, Appl. Phys. Lett. 97, 253110 (2010).
http://dx.doi.org/10.1063/1.3525940
26.
26. C. R. Dean et al., Nature 497, 598 (2013).
http://dx.doi.org/10.1038/nature12186
27.
27. C. R. Woods et al., Nat. Phys. 10, 451 (2014).
http://dx.doi.org/10.1038/nphys2954
28.
28. A. Summerfield et al., “ Strain-engineered graphene grown on boron nitride by molecular beam epitaxy” (unpublished).
29.
29. S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205201
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/34/2/10.1116/1.4938157
Loading
/content/avs/journal/jvstb/34/2/10.1116/1.4938157
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/34/2/10.1116/1.4938157
2016-01-11
2016-09-28

Abstract

The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy(MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 °C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 °C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 × 10 mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to growgraphene on sapphire at substrate temperatures between 1000 and 1650 °C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moiré pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moiré pattern to the commensurate growth of crystalline graphene on h-BN.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/34/2/1.4938157.html;jsessionid=RP2BN6A0gfit83C86FJ-CdHN.x-aip-live-06?itemId=/content/avs/journal/jvstb/34/2/10.1116/1.4938157&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/34/2/10.1116/1.4938157&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/34/2/10.1116/1.4938157'
Right1,Right2,Right3,