Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
2. L. Britnell et al., Science 335, 947 (2012).
3. H. Yang et al., Science 336, 1140 (2012).
4. L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).
5. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9, 30 (2009).
6. D. C. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).
7. W. Yang et al., Nat. Mater. 12, 792 (2013).
8. C. Berger et al., J. Phys. Chem. B 108, 19912 (2004).
9. W. A. de Heer et al., Solid State Commun. 143, 92 (2007).
10. G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth, and G. Lupina, Phys. Status Solidi B 248, 2619 (2011).
11. J. Park, W. C. Mitchel, L. Grazulis, H. E. Smith, K. G. Eyink, J. J. Boeckl, D. H. Tomich, S. D. Pacley, and J. E. Hoelscher, Adv. Mater. 22, 4140 (2010).
12. J. M. Garcia et al., Solid State Commun. 152 975 (2012).
13. M. H. Oliveira et al., Carbon 56, 339 (2013).
14. E. Moreau, F. J. Ferrer, D. Vignaud, S. Godey, and X. Wallart, Phys. Status Solidi A 207, 300 (2010).
15. U. Wurstbauer et al., Carbon 50, 4822 (2012).
16. J. Dabrowski, G. Lippert, T. Schroeder, and G. Lupina, Appl. Phys. Lett. 105, 191610 (2014).
17. T. Taniguchi and K. Watanabe, J. Cryst. Growth 303, 525 (2007).
18. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
19. D. S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, Nano Lett. 8, 4320 (2008).
20. D. Lenski and M. S. Fuhrer, J. Appl. Phys. 110, 013720 (2011).
21. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett. 12, 3925 (2012).
22. H. Huang, W. Chen, S. Chen, and A. T. S. Wee, ACS Nano 2, 2513 (2008).
23. L. G. Cancado et al., Nano Lett. 11, 3190 (2011).
24. S. K. Jerng et al., J. Phys. Chem. C 115, 4491 (2011).
25. F. J. Nelson, V. K. Kamineni, T. Zhang, E. S. Comfort, J. U. Lee, and A. C. Diebold, Appl. Phys. Lett. 97, 253110 (2010).
26. C. R. Dean et al., Nature 497, 598 (2013).
27. C. R. Woods et al., Nat. Phys. 10, 451 (2014).
28. A. Summerfield et al., “ Strain-engineered graphene grown on boron nitride by molecular beam epitaxy” (unpublished).
29. S. Reich, A. C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson, Phys. Rev. B 71, 205201 (2005).

Data & Media loading...


Article metrics loading...



The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy(MBE) as a growth method for graphene layers. The standard dual chamber GENxplor has been specially modified by Veeco to achieve growth temperatures of up to 1850 °C in ultrahigh vacuum conditions and is capable of growth on substrates of up to 3 in. in diameter. To calibrate the growth temperatures, the authors have formed graphene on the Si-face of SiC by heating wafers to temperatures up to 1400 °C and above. To demonstrate the scalability, the authors have formed graphene on SiC substrates with sizes ranging from 10 × 10 mm2 up to 3-in. in diameter. The authors have used a carbon sublimation source to growgraphene on sapphire at substrate temperatures between 1000 and 1650 °C (thermocouple temperatures). The quality of the graphene layers is significantly improved by growing on hexagonal boron nitride (h-BN) substrates. The authors observed a significant difference in the sticking coefficient of carbon on the surfaces of sapphire and h-BN flakes. Our atomic force microscopy measurements reveal the formation of an extended hexagonal moiré pattern when our MBE layers of graphene on h-BN flakes are grown under optimum conditions. The authors attribute this moiré pattern to the commensurate growth of crystalline graphene on h-BN.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd