Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/34/5/10.1116/1.4960628
1.
J. Hemminger, G. Crabtree, and J. Sarrao, “ From quanta to the continuum: opportunities for mesoscale science,” Technical Report 1183982, U.S. Department of Energy Basic Energy Sciences Advisory Committee, September 2012.
2.
G. W. Crabtree and J. L. Sarrao, MRS Bull. 37, 1079 (2012).
http://dx.doi.org/10.1557/mrs.2012.274
3.
J. C. Hemminger, G. Crabtree, and A. Molezemoff, “ Science for Energy Technology: Strengthening the link between basic research and industry,” US Department of Energy, Office of Science report, Washington, DC, 2010, pp. 1-216, available at http://science.energy.gov/~/media/bes/pdf/reports/files/setf_rpt_print.pdf (accessed 8 August 2016).
4.
R. H. French et al., Curr. Opin. Solid State Mater. Sci. 19, 212 (2015).
http://dx.doi.org/10.1016/j.cossms.2014.12.008
5.
M. Kontges, S. Kurtz, C. Packard, U. Jahn, K. Berger, K. Kato, T. Friesen, H. Liu, and M. Van Isehegam, “ IEA-PVPS {Task 13}: Review of failures of PV modules,” Technical Report IEA-PVPS T13-01:2014, May 2014.
6.
W. De Soto, S. A. Klein, and W. A. Beckman, Sol. Energy 80, 78 (2006).
http://dx.doi.org/10.1016/j.solener.2005.06.010
7.
A. Hovinen, Phys. Scr. T54, 175 (1994).
http://dx.doi.org/10.1088/0031-8949/1994/T54/043
8.
Z. Salam, K. Ishaque, and H. Taheri, “ An improved two-diode photovoltaic (PV) model for PV system,” in 2010 Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES) 2010 Power India (2010), pp. 15.
9.
M. Taherbaneh, G. Farahani, and K. Rahmani, “ Evaluation the accuracy of one-diode and two-diode models for a solar panel based open-air climate measurements,” in Solar Cells-Silicon Wafer-Based Technologies ( InTech, Craotia, 2011), pp. 512515.
10.
A. Jain and A. Kapoor, Sol. Energy Mater. Sol. Cells 81, 269 (2004).
http://dx.doi.org/10.1016/j.solmat.2003.11.018
11.
M. Bashahu and P. Nkundabakura, Sol. Energy 81, 856 (2007).
http://dx.doi.org/10.1016/j.solener.2006.11.002
12.
K. Bouzidi, M. Chegaar, and A. Bouhemadou, Sol. Energy Mater. Solar Cells 91, 1647 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.05.019
13.
E. Cuce, P. Mert Cuce, and T. Bali, Appl. Energy 111, 374 (2013).
http://dx.doi.org/10.1016/j.apenergy.2013.05.025
14.
C. Hansen, “ Estimation of parameters for single diode models using measured IV curves,” in 39th IEEE Photovoltaic Specialists Conference, Tampa, FL (2013).
15.
F. Khan, S. N. Singh, and M. Husain, Sol. Energy Mater. Sol. Cells 94, 1473 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.03.018
16.
T. J. McMahon, T. S. Basso, and S. R. Rummel, “ Cell shunt resistance and photovoltaic module performance,” in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference (1996), pp. 12911294.
17.
Priyanka, M. Lal, and S. N. Singh, Sol. Energy Mater. Sol. Cells 91, 137 (2007).
http://dx.doi.org/10.1016/j.solmat.2006.07.008
18.
E. M. G. Rodrigues, R. Melício, V. M. F. Mendes, and J. P. S. Catalão, “ Simulation of a solar cell considering single-diode equivalent circuit model,” in International Conference On Renewable Energies And Power Quality, Spain (2011), pp. 1315.
19.
D. Sera and R. Teodorescu, “ Robust series resistance estimation for diagnostics of photovoltaic modules,” in 35th Annual Conference of IEEE Industrial Electronics, 2009. IECON'09 (2009), pp. 800805.
20.
D. Sera, “ Series resistance monitoring for photovoltaic modules in the vicinity of MPP,” in 25th European Photovoltaic Solar Energy Conference and Exhibition (2010), pp. 45064510.
21.
A. Jain, S. Sharma, and A. Kapoor, Sol. Energy Mater. Sol. Cells 90, 25 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.01.007
22.
F. Ghani, M. Duke, and J. Carson, Sol. Energy 91, 422 (2013).
http://dx.doi.org/10.1016/j.solener.2012.09.005
23.
G. Petrone, G. Spagnuolo, and M. Vitelli, Sol. Energy Mater. Sol. Cells 91, 1652 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.05.021
24.
T. J. Peshek, S. Mathews, Y. Hu, and R. H. French, “ Mirror augmented photovoltaics and time series analytics of the I-V curve parameters,” in 40th IEEE Photovoltaic Specialist Conference (PVSC) (2014), pp. 20272031.
25.
S. Sellner, J. Sutterlueti, S. Ransome, L. Schreier, and N. Allet, “ Understanding PV module performance: Further validation of the novel loss factors model and its extension to AC arrays,” in 27th European Photovoltaic Solar Energy Conference and Exhibition (2012), pp. 31993204.
26.
S. Sellner, J. Sutterluti, L. Schreier, and S. Ransome, “ Advanced PV module performance characterization and validation using the novel Loss Factors Model,” in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), June (2012), pp. 002938002943.
27.
J. S. Stein, J. Sutterlueti, S. Ransome, C. W. Hansen, and B. H. King, “ Outdoor PV performance evaluation of three different models: single-diode, SAPM and loss factor model,” in EU PVSEC Proccedings (2013), pp. 28652871.
28.
I. B. Cooper, K. Tate, J. S. Renshaw, A. F. Carroll, K. R. Mikeska, R. C. Reedy, and A. Rohatgi, IEEE J. Photovoltaics 4, 134 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2013.2285621
29.
Y. M. Chiang, L. A. Silverman, R. H. French, and R. M. Cannon, J. Am. Ceram. Soc. 77, 1143 (1994).
http://dx.doi.org/10.1111/j.1151-2916.1994.tb05386.x
30.
S. B. Rane, P. K. Khanna, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Chem. Phys. 82, 237 (2003).
http://dx.doi.org/10.1016/S0254-0584(03)00236-0
31.
E. Kossen, B. Heurtault, and A. F. Stassen, “ Comparison of two step printing methods for front side metallization,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference, Valencia, Spain (2010), pp. 20992100.
32.
H. Hannebauer, T. Dullweber, T. Falcon, and R. Brendel, Energy Procedia 38, 725 (2013).
http://dx.doi.org/10.1016/j.egypro.2013.07.339
33.
H. Hannebauer, T. Dullweber, T. Falcon, X. Chen, and R. Brendel, Energy Procedia 43, 66 (2013).
http://dx.doi.org/10.1016/j.egypro.2013.11.089
34.
Z. G. Li, L. Liang, A. S. Ionkin, B. M. Fish, M. E. Lewittes, L. K. Cheng, and K. R. Mikeska, J. Appl. Phys. 110, 074304 (2011).
http://dx.doi.org/10.1063/1.3642956
35.
M. Z. Burrows, A. Meisel, D. Balakrishnan, A. Tran, D. Inns, E. Kim, A. F. Carroll, and K. R. Mikeska, 39th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2013), pp. 21712175.
36.
D. Pysch, A. Mette, A. Filipovic, and S. W. Glunz, Prog. Photovoltaics 17, 101 (2009).
http://dx.doi.org/10.1002/pip.855
37.
A. Mette, D. Pysch, G. Emanuel, D. Erath, R. Preu, and S. W. Glunz, Prog. Photovoltaics 15, 493 (2007).
http://dx.doi.org/10.1002/pip.755
38.
F. Gao, Z. Li, M. E. Lewittes, K. R. Mikeska, P. D. VerNooy, and L. Kin Cheng, J. Electrochem. Soc. 158, B1300 (2011).
http://dx.doi.org/10.1149/2.021111jes
39.
L. S. Bruckman, N. R. Wheeler, J. Ma, E. Wang, C. K. Wang, I. Chou, J. Sun, and R. H. French, IEEE Access 1, 384 (2013).
http://dx.doi.org/10.1109/ACCESS.2013.2267611
40.
International Energy Agency, Performance and Reliability of Photovoltaic Systems: Task 13 (International Energy Agency, Technical Report IEA-PVPS T13-01:2014, March 2014).
41.
G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, Springer Texts in Statistics, 1st ed. ( Springer, New York, 2013), corr. 5th printing 2015 edition.
42.
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics ( Springer, New York, 2009).
43.
D. M. Riley and G. K. Venayagamoorthy, “ Comparison of a recurrent neural network PV system model with a traditional component-based PV system model,” in 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2011), pp. 002426002431.
44.
D. Riley and J. Johnson, “ Photovoltaic prognostics and heath management using learning algorithms,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (2012), pp. 001535001539.
45.
A. Dali, A. Bouharchouche, and S. Diaf, “ Parameter identification of photovoltaic cell/module using genetic algorithm (GA) and particle swarm optimization (PSO),” in 3rd International Conference on Control, Engineering and Information Technology (CEIT) (IEEE, 2015), pp. 16.
46.
K. Ishaque, Z. Salam, H. Taheri, and A. Shamsudin, “ Parameter extraction of photovoltaic cell using differential evolution method,” in 2011 IEEE Applied Power Electronics Colloquium (IAPEC), April (2011), pp. 1015.
47.
O. Hachana, K. E. Hemsas, G. M. Tina, and C. Ventura, J. Renewable Sustainable Energy 5, 053122 (2013).
http://dx.doi.org/10.1063/1.4822054
48.
G. James, D. Witten, T. Hastie, and R. Tibshirani, “ Moving beyond linearity-local regression,” in An Introduction to Statistical Learning: With Applications in R, Springer Texts in Statistics, 1st ed. ( Springer, New York, 2013), Chap. 7.6, pp. 280282; corr. 5th printing 2015 edition.
49.
T. Hastie and R. Tibshirani, J. R. Stat. Soc., Ser. B 55, 757 (1993).
50.
B. D. Ripley and R Core Team, R: Local Polynomial Regression Fitting ( R Foundation for Statistical Computing, Vienna, Austria, 2016).
51.
L. Castaner and S. Silvestre, Modeling Photovoltaic Systems Using PSpice ( Counterpoint, Washington, D.C., 2002).
52.
A. Zekry and A. Y. Al-Mazroo, IEEE Trans. Electron Devices 43, 691 (1996).
http://dx.doi.org/10.1109/16.491244
53.
S. Eidelloth, F. Haase, and R. Brendel, IEEE J. Photovoltaics 2, 572 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2187774
54.
M. Koehl, M. Heck, and S. Wiesmeier, Sol. Energy Mater. Sol. Cells 99, 282 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.12.011
55.
H. Shalaby, Sol. Cells 14, 51 (1985).
http://dx.doi.org/10.1016/0379-6787(85)90006-7
56.
Y. Hu, M. A. Hosain, T. Jain, Y. R. Gunapati, L. Elkin, G. Q. Zhang, and R. H. French, “ Global SunFarm data acquisition network, energy CRADLE, and time series analysis,” in 2013 IEEE Energytech, May (2013), pp. 15.
57.
W. Lin, T. J. Peshek, L. S. Bruckman, M. A. Schuetz, and R. H. French, IEEE J. Photovoltaics 5, 917 (2015).
http://dx.doi.org/10.1109/JPHOTOV.2015.2405758
58.
M. Köhl, “ From climate data to accelerated test conditions,” Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany, paper presented at the PVMRW, Golden (CO, USA), 2011, http://www1.eere.energy.gov/solar/pdfs/pvmrw2011_05_plen_kohl.pdf.
59.
J. Herrmann, T. Lorenz, K. Slamova, E. Klimm, M. Koehl, and K.-A. Weiss, “ Desert applications of PV modules,” in 40th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 2014), pp. 20432046.
60.
M. Koehl, M. Heck, S. Wiesmeier, and J. Wirth, Sol. Energy Mater. Sol. Cells 95, 1638 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.020
61.
R Core Team, R: A Language and Environment for Statistical Computing ( R Foundation for Statistical Computing, Vienna, Austria, 2015), available at https://cran.r-project.org/doc/manuals/r-release/fullrefman.pdf (accessed 6 August 2016).
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/34/5/10.1116/1.4960628
Loading
/content/avs/journal/jvstb/34/5/10.1116/1.4960628
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/34/5/10.1116/1.4960628
2016-08-12
2016-09-27

Abstract

The authors demonstrate the feasibility of quantifying cell-level performance heterogeneity from module-level curves by determining conditions of bypass diode turn-on. Analysis of these curves falls outside of typical diode-based models of photovoltaic (PV) performance. The authors show that this approach can leverage statistical and machine learning techniques for broad application to massive datasets, and combine those insights with simulations and laboratory-based experiments to provide useful information into the metastability of the interfaces of a PV cell. The authors find good agreement between the experimentally determined curves and the simulated curves, which guide the variable selection in the massive dataset collected from sites in Cleveland, OH, USA, the Negev Desert, Israel, Isla Gran Canaria, Spain, and Mount Zugspitze, Germany.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/34/5/1.4960628.html;jsessionid=-kDrj2HpGD94t6cPwaqSuhh9.x-aip-live-06?itemId=/content/avs/journal/jvstb/34/5/10.1116/1.4960628&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/34/5/10.1116/1.4960628&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/34/5/10.1116/1.4960628'
Right1,Right2,Right3,