Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/avs/journal/jvstb/34/5/10.1116/1.4961906
1.
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
http://dx.doi.org/10.1038/318162a0
2.
X. Lu, M. Grobis, K. H. Khoo, S. G. Louie, and M. F. Crommie, Phys. Rev. B 70, 115418 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115418
3.
X. Zhang et al., Phys. Rev. B 75, 235444 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235444
4.
M. Feng and H. Petek, Science 320, 359 (2008).
http://dx.doi.org/10.1126/science.1155866
5.
J. A. Larsson, S. D. Elliott, J. C. Greer, J. Repp, G. Meyer, and R. Allenspach, Phys. Rev. B 77, 115434 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115434
6.
W. W. Pai et al., Phys. Rev. Lett. 104, 036103 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036103
7.
L. Tang, X. Zhang, Q. Guo, Y.-N. Wu, L.-L. Wang, and H.-P. Cheng, Phys. Rev. B 82, 125414 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125414
8.
S. I. Bozhko, S. A. Krasnikov, O. Lúbben, B. E. Murphy, K. Radican, V. N. Semenov, H. C. Wu, B. Bulfin, and I. V. Shvets, Phys. Rev. B 84, 195412 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195412
9.
M. Švec, P. Merino, Y. J. Dappe, C. González, E. Abad, P. Jelínek, and J. A. Martín-Gago, Phys. Rev. B 86, 121407 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121407
10.
K. Pussi et al., Phys. Rev. B 86, 205406 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205406
11.
F. Loske, J. Lübbe, J. Schütte, M. Reichling, and A. Kühnle, Phys. Rev. B 82, 155428 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155428
12.
A. V. Matetskiy, L. V. Bondarenko, D. V. Gruznev, A. V. Zotov, A. A. Saranin, J. P. Chou, C. R. Hsing, C. M. Wei, and Y. L. Wang, Surf. Sci. 616, 44 (2013).
http://dx.doi.org/10.1016/j.susc.2013.05.011
13.
N. V. Sibirev, V. G. Dubrovskii, A. V. Matetskiy, L. V. Bondarenko, D. V. Gruznev, A. V. Zotov, and A. A. Saranin, Appl. Surf. Sci. 307, 46 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.03.132
14.
M. A. Groce, B. R. Conrad, W. G. Cullen, A. Pimpinelli, E. D. Williams, and T. L. Einstein, Surf. Sci. 606, 53 (2012).
http://dx.doi.org/10.1016/j.susc.2011.08.020
15.
M. Hinterstein, X. Torrelles, R. Felici, J. Rius, M. Huang, S. Fabris, H. Fuess, and M. Pedio, Phys. Rev. B 77, 153412 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.153412
16.
X. Torrelles, V. Langlais, M. D. Santis, H. Tolentino, and Y. Gauthier, J. Phys. Chem. C 114, 15645 (2010).
http://dx.doi.org/10.1021/jp1008175
17.
X. Torrelles, V. Langlais, M. D. Santis, H. C. N. Tolentino, and Y. Gauthier, Phys. Rev. B 81, 041404 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.041404
18.
X. Torrelles, M. Pedio, C. Cepek, and R. Felici, Phys. Rev. B 86, 075461 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075461
19.
H. I. Li et al., Phys. Rev. Lett. 103, 056101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.056101
20.
X. Q. Shi, A. B. Pang, K. L. Man, R. Q. Zhang, C. Minot, M. S. Altman, and M. A. Van Hove, Phys. Rev. B 84, 235406 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235406
21.
G. Xu, X.-Q. Shi, R. Q. Zhang, W. W. Pai, H. T. Jeng, and M. A. Van Hove, Phys. Rev. B 86, 075419 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075419
22.
T. Ovramenko, F. Spillebout, F. C. Bocquet, A. J. Maynei, G. Dujardin, P. Sonnet, L. Stauffer, Y. Ksari, and J.-M. Themlin, Phys. Rev. B 87, 155421 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155421
23.
H. Shin et al., Phys. Rev. B 89, 245428 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.245428
24.
A. Tamai, A. P. Seitsonen, F. Baumberger, M. Hengsberger, Z.-X. Shen, T. Greber, and J. Osterwalder, Phys. Rev. B 77, 075134 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075134
25.
J. D. Sau, J. B. Neaton, H. J. Choi, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 101, 026804 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026804
26.
X. Q. Shi, M. A. Van Hove, and R. Q. Zhang, Phys. Rev. B 85, 075421 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.075421
27.
I. Hamada and M. Tsukada, Phys. Rev. B 83, 245437 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245437
28.
D. Li, C. Barreteau, A. L. Kawahara, J. Lagoute, C. Chancon, Y. Girard, S. Rousset, V. Repain, and A. Smogunov, Phys. Rev. B 93, 085425 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.085425
29.
N. Martsinovich and L. Kantorovich, Phys. Rev. B 77, 115429 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115429
30.
N. Martsinovich and L. Kantorovich, Nanotechnology 19, 235702 (2008).
http://dx.doi.org/10.1088/0957-4484/19/23/235702
31.
N. Martsinovich and L. Kantorovich, Nanotechnology 20, 135706 (2009).
http://dx.doi.org/10.1088/0957-4484/20/13/135706
32.
J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).
http://dx.doi.org/10.1088/0034-4885/47/4/002
33.
R. Cantrell and P. Clancy, J. Chem. Theory Comput. 8, 1048 (2012).
http://dx.doi.org/10.1021/ct200819r
34.
B. Koo and P. Clancy, Mol. Simul. 40, 58 (2014).
http://dx.doi.org/10.1080/08927022.2013.840896
35.
B. Koo, P. Berard, and P. Clancy, J. Chem. Theory Comput. 11, 1172 (2015).
http://dx.doi.org/10.1021/ct501044u
36.
Y. Acevedo, R. Cantrell, P. Berard, D. Koch, and P. Clancy, Langmuir 32, 3045 (2016).
http://dx.doi.org/10.1021/acs.langmuir.5b04500
37.
H. Liu, Z. Lin, L. V. Zhigilei, and P. Reinke, J. Phys. Chem. C 112, 4687 (2008).
http://dx.doi.org/10.1021/jp0775597
38.
See supplementary material at http://dx.doi.org/10.1116/1.4961906 with detailed description of the simulation algorithm.[Supplementary Material]
39.
D. V. Gruznev et al., Nat. Commun. 4, 1679 (2013).
http://dx.doi.org/10.1038/ncomms2706
40.
A. V. Matetskiy, D. V. Gruznev, A. V. Zotov, and A. A. Saranin, Phys. Rev. B 83, 195421 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195421
41.
T. Nakayama, J. Onoe, K. Takeuchi, and M. Aono, Phys. Rev. B 59, 12627 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12627
42.
K. Tsuchie, T. Nagao, and S. Hasegawa, Phys. Rev. B 60, 11131 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.11131
43.
D. V. Gruznev, A. V. Matetskiy, L. V. Bondarenko, A. V. Zotov, A. A. Saranin, J. P. Chou, C. M. Wei, and Y. L. Wang, Surf. Sci. 612, 31 (2013).
http://dx.doi.org/10.1016/j.susc.2013.02.007
44.
Y. G. Ding, C. T. Chan, and K. M. Ho, Surf. Sci. 275, L691 (1992).
http://dx.doi.org/10.1016/0039-6028(92)90785-5
45.
I. H. Hong, D. K. Liao, Y. C. Chou, C. M. Wei, and S. Y. Tong, Phys. Rev. B 54, 4762 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4762
46.
J. Y. Lee and M. H. Kang, J. Korean Phys. Soc. 55, 2460 (2009).
http://dx.doi.org/10.3938/jkps.55.2460
47.
T. Nagao, S. Hasegawa, K. Tsuchie, S. Ino, C. Voges, G. Klos, H. Pfnür, and M. Henzler, Phys. Rev. B 57, 10100 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.10100
48.
D. V. Gruznev, I. N. Filippov, D. A. Olyanich, D. N. Chubenko, I. A. Kuyanov, A. A. Saranin, A. V. Zotov, and V. G. Lifshits, Phys. Rev. B 73, 115335 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.115335
49.
J. K. Kim, K. S. Kim, J. L. McChesney, E. Rotenberg, H. N. Hwang, C. C. Hwang, and H. W. Yeom, Phys. Rev. B 80, 075312 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075312
50.
L. V. Bondarenko et al., Sci. Rep. 3, 1826 (2013).
http://dx.doi.org/10.1038/srep01826
51.
S. Jeong, J. Phys. Soc. Jpn. 79, 074603 (2010).
http://dx.doi.org/10.1143/JPSJ.79.074603
http://aip.metastore.ingenta.com/content/avs/journal/jvstb/34/5/10.1116/1.4961906
Loading
/content/avs/journal/jvstb/34/5/10.1116/1.4961906
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/avs/journal/jvstb/34/5/10.1116/1.4961906
2016-08-29
2016-09-26

Abstract

The authors have proposed a simulation procedure for the evaluation of energetics of C islands on crystalline surfaces that allows questions relating to shape, size, and orientation of the islands to be addressed. Simulation consists of placing a patch of close-packed C array of a given shape and size on a surface potential relief and finding energy minima by variation of island position and orientation. Upon appropriate adjustment of the surface potential relief, simulations reproduce well all the main results of the scanning tunneling microscopy observations. For C islands forming on In-adsorbed and pristine surfaces, the optimal surface relief shows up as a periodic array of cosine-shaped peaks. The proposed approach provides a hint for understanding the driving mechanisms of C self-assembly, and, in principle, it can be applied to other adsorbate-substrate systems.

Loading

Full text loading...

/deliver/fulltext/avs/journal/jvstb/34/5/1.4961906.html;jsessionid=dDLf8Sl02ZHvxR8Bw4CCeKa5.x-aip-live-06?itemId=/content/avs/journal/jvstb/34/5/10.1116/1.4961906&mimeType=html&fmt=ahah&containerItemId=content/avs/journal/jvstb
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jvstb.avspublications.org/34/5/10.1116/1.4961906&pageURL=http://scitation.aip.org/content/avs/journal/jvstb/34/5/10.1116/1.4961906'
Right1,Right2,Right3,