Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. Witvrouw, B. Du Bois, P. De Moor, A. Verbist, C. A. Van Hoof, H. Bender, and C. Baert, Proc. SPIE 4174, 130 (2000).
K. R. Williams, K. Gupta, and M. Wasilik, J. MEMS 12, 761 (2003).
R. H. Olsson, J. G. Fleming, K. E. Wojciechowski, M. S. Baker, and M. R. Tuck, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (2007).
H. Winters and J. Coburn, Appl. Phys. Lett. 34, 70 (1979).
M. D. Henry, M. Shearn, and A. Scherer, J. Vac. Sci. Technol., B 28, C6F26 (2010).
V. Caubet, C. Beylier, S. Borel, and O. Renault, J. Vac. Sci. Technol., B 24, 2748 (2006).
G. S. Oehrlein, T. D. Bestwick, P. L. Jones, M. A. Jaso, and J. L. Lindstrorn, J. Electrochem. Soc. 138, 1443 (1991).
A. Campo, C. Cardinaud, and G. Turban, J. Vac. Sci. Technol., B 13, 235 (1995).
S. Borel, V. Caubet, J. Bildea, A. Cherif, C. Arvet, C. Vizioz, J. M. Hartmann, G. Rabillé, and T. Billona, ECS Trans. 3, 627 (2006).
M. S. B. Castro, S. Barnola, and B. Gluück, J. Integr. Circuits Syst. 8, 104 (2013).
M. Serry, A. Rubin, M. Ibrahem, and S. Sedky, J. MEMS 22, 1081 (2013).
M. D. Henry, C. Welch, and A. Scherer, J. Vac. Sci. Technol., A 27, 5 (2009).
S. Borel, C. Arvet, J. Bilde, V. Caubet, and D. Louis, Jpn. J Appl. Phys., Part 1 43, 3964 (2004).
B. E. E. Kastenmeier, P. J. Matsuo, G. S. Oehrlein, R. E. Ellefson, and L. C. Frees, J. Vac. Sci. Technol., A 19, 1 (2001).
M. G. Blain, R. L. Jarecki, and R. J. Simonson, J. Vac. Sci. Technol., A 16, 2115 (1998).
M. G. Blain, T. L. Meisenheimer, and J. E. Stevens, J. Vac. Sci. Technol., A 14, 4 (1996).
E. A. Douglas, J. J. Sheng, J. C. Verley, and M. S. Carroll, J. Vac. Sci. Technol., B 33, 4 (2015).
M. G. Blain, J. Vac. Sci. Technol., A 17, 665 (1999).
M. Milojevic, R. Contreras-Guerrero, M. Lopez-Lopez, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 95, 21 (2009).
A. Campo, C. Cardinaud, and G. Turban, Plasma Sources Sci. Technol. 4, 398 (1995).

Data & Media loading...


Article metrics loading...



This work reports on selective isotropic dry etching of chemically vapor deposited Ge thin film, release layers using a Shibaura chemical downstream etcher with NF and Ar based plasma chemistry. Relative etch rates between Ge, Si, and SiN are described with etch rate reductions achieved by adjusting plasma chemistry with O. Formation of oxides reducing etch rates was measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiN etch rates while retarding Ge etching. Observation of preferential etching of Ge in the presence of Si and SiN is also observed with lateral etch rates reaching 19.2 m/min for the Ge layers. Results presented here demonstrate the use of Ge as a microelectromechanical systems device dry release layer in the presence of Si and SiN making it a highly advantageous technology, especially for optical devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd