Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. A. Blauw, G. Craciun, W. G. Sloof, P. J. French, and E. van der Drift, J. Vac. Sci. Technol., B 20, 3106 (2002).
S. Gomez, R. Jun Belen, M. Kiehlbauch, and E. S. Aydil, J. Vac. Sci. Technol., A 22, 606 (2004).
R. Abdolvand and F. Ayazi, Sens. Actuators, A 144, 109 (2008).
R. Dussart et al., J. Micromech. Microeng. 14, 190 (2004).
F. Saffih, C. Con, A. Alshammari, M. Yavuz, and B. Cui, J. Vac. Sci. Technol., B 32, 06FI04 (2014).
M. J. Madou, Fundamentals of Microfabrication and Nanotechnology, 3rd ed. ( CRC, 2011), Vol. II, p. 219.
F. Saffih, A. M. Elshurafa, M. A. Mohammad, N. N. Fitzpatrick, and S. Evoy, 10th IEEE International NEWAS Conference, Montreal, Canada (2012), p. 333.
F. Saffih, B. Cui, S. Evoy, N. N. Fitzpatrick, M. A. Mohammad, and S. Evoy, IEEE International Symposium on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil (2011), p. 797.
A. Susarrey-Arce, A. G. Marın, S. Schlautmann, L. Lefferts, J. G. E. Gardeniers, and A. van Houselt, J. Micromech. Microeng. 23, 025004 (2013).
M. Im, H. Im, J. H. Lee, J. B. Yoo, and Y. K. Choi, Soft Matter 6, 1401 (2010).
G. Dahlen, M. Osborn, N. Okulan, W. Foreman, A. Chand, and J. Foucher, J. Vac. Sci. Technol., B 23, 2297 (2005).
P. Harvey-Collard, A. Jaouad, D. Drouin, and M. Pioro-Ladrière, Microelectron. Eng. 110, 408 (2013).
S. Walavalkar, P. Latawiec, and A. Scherer, Appl. Phys. Lett. 102, 183101 (2013).
L. An, Y. Zheng, K. Li, P. Luo, and Y. Wu, J. Vac. Sci. Technol., B 23, 1603 (2005).
I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson, and L. Montelius, Microelectron. Eng. 61, 449 (2002).
Z. Liu, Y. Wu, B. Harteneck, and D. Olynick, Nanotechnology 24, 015305 (2013).
M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J. Glide, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, J. Microelectromech. Syst. 11, 385 (2002).
F. Jiang, A. Keating, M. Martyniuk, K. Prasad, L. Faraone, and J. M. Dell, J. Micromech. Microeng. 22, 9 (2012).
J. H. Min, G. R. Lee, J. K. Lee, S. H. Moon, and C. K. Kim, J. Vac. Sci. Technol., B 22, 893 (2004).
M. A. Blauw, T. Zijlstra, and E. van der Drift, J. Vac. Sci. Technol., B 19, 2930 (2001).
Z. Ouyang, D. N. Ruzic, M. Kiehlbauch, A. Schrinsky, and K. Torek, J. Vac. Sci. Technol., A 32, 041306 (2014).

Data & Media loading...


Article metrics loading...



Dry etching of silicon has been extensively studied, mostly with a goal of obtaining perfectly vertical sidewalls with high aspect ratio. Yet, sloped sidewall with a negative taper angle (i.e., diameter/width decreases linearly with depth) may find various applications. However, the systematic study on the etching process development to obtain such a profile is rather scarce. In this work, the authors present a controlled and reproducible fabrication process to achieve silicon nanostructures with negatively tapered sidewall profile using inductively coupled plasma-reactive ion etching with CF and SF gas. The plasma etching parameters have been thoroughly optimized in order to avoid the undercut or curved reentrant profile due to isotropic etching, so as to achieve a negatively tapered profile. The influence of the plasma etching parameters, especially the radio freguency power and CF/SF gas flow ratio, on the etching rate and the sidewall taper angle has been analyzed. With an optimal etching recipe, the silicon nanostructures with an unprecedented large 10° negative taper angle were achieved. These results were demonstrated on different structure sizes of 500 nm, 700 nm, and 1.2 m diameters.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd