Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).
S. Oh, J. H. Baeck, H. S. Shin, J. U. Bae, K.-S. Park, and I. B. Kang, IEEE Electron Device Lett. 35, 1037 (2014).
H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, Appl. Phys. Lett. 92, 133503 (2008).
M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 92, 133512 (2008).
C.-Y. Jeong, D. Lee, S.-H. Song, J. I. Kim, J.-H. Lee, J.-G. Um, J. Jang, and H.-I. Kwon, J. Vac. Sci. Technol., B 33, 030603 (2015).
S. Lee et al., IEEE Electron Device Lett. 31, 231 (2010).
C. Chen, K. Abe, H. Kumomi, and J. Kanicki, IEEE Trans. Electron Devices 56, 1177 (2009).
C. E. Kim, E. N. Cho, P. Moon, G. H. Kim, D. L. Kim, H. J. Kim, and I. Yun, IEEE Electron Device Lett. 31, 1131 (2010).
K. Nomura, T. Kamiya, and H. Hosono, J. Soc. Inf. Disp. 18, 789 (2010).
C.-S. Fuh, P.-T. Liu, W.-H. Huang, and S. M. Sze, IEEE Electron Device Lett. 35, 1103 (2014).
S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, Appl. Phys. Lett. 98, 122105 (2011).
B.-S. Yeh, “ Modeling and characterization of amorphous oxide semiconductor thin-film transistors,” Ph.D. dissertation (Department Of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 2015).
P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).
N. Arpatzanis, C. Dimitriadis, S. Siskos, A. Hatzopoulos, and G. Kamarinos, Thin Solid Films 515, 7581 (2007).
M. A. Lampert and P. Mark, Current Injection in Solids ( Academic, New York, 1970).
T. C. Fung, “ Amorphous In-Ga-Zn-O thin film transistor for future optoelectronics,” Ph.D. dissertation ( University of Michigan, Ann Arbor, MI, 2010).
L. Shao, K. Nomura, T. Kamiya, and H. Hosono, Electrochem. Solid-State Lett. 14, H197 (2011).
Y.-K. Moon, S. Lee, W.-S. Kim, B.-W. Kang, C.-O. Jeong, D.-H. Lee, and J.-W. Park, Appl. Phys. Lett. 95, 013507 (2009).
J. C. Park, I.-T. Cho, E.-S. Cho, D. H. Kim, C.-Y. Jeong, and H.-I. Kwon, J. Nanoelectron. Optoelectron. 9, 67 (2014).
X. Ding, J. Zhang, J. Li, W. Shi, H. Zhang, X. Jiang, and Z. Zhang, Superlattices Microstruct. 69, 204 (2014).
M. Park, J. Jang, S. Park, J. Kim, J. Seong, J. Hwang, and C. E. Park, Appl. Phys. Lett. 100, 102110 (2012).

Data & Media loading...


Article metrics loading...



The authors determine the density of interface and bulk trap states in the amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) by using a simple extraction method. To determine the bulk trap density, the current–voltage curve is measured between the source and drain electrodes of the TFT at room temperature under the flat-band condition. In the high voltage region, the carrier transport is well described by the space charge limited current controlled by the bulk trap states that are exponentially distributed in energy with a trap density at the conduction band edge of 6.27 × 1017 cm−3 eV−1 and an inverse slope for the trap distribution of 0.12 eV. The density of traps at the a-IGZO/gate dielectric interface is calculated by subtracting the bulk trap components from the density of total subgap trap states extracted from the subthreshold slope in the transfer curve and the frequency-independent capacitance-voltage characteristics. The experimental results show that the contribution of the interface trap is more significant compared to that of the bulk trap in the subgap density of states of the fabricated a-IGZO TFTs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd