1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Femtosecond laser welded nanostructures and plasmonic devices
Rent:
Rent this article for
Access full text Article
/content/lia/journal/jla/24/4/10.2351/1.3695174
1.
1. Y. Zhou, Microjoining and Nanojoining (Woodhead Publishing Ltd, Cambridge, England, 2008).
2.
2. Y. Lu, J. Huang, C. Wang, S. Sun, and J. Lou, “Cold welding of ultrathin gold nanowires,” Nat. Nanotechnol. 5, 218224 (2010).
http://dx.doi.org/10.1038/nnano.2010.4
3.
3. Y. Peng, T. Cullis, and B. Inkson, “Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder,” Nano Lett. 9, 9196 (2009).
http://dx.doi.org/10.1021/nl8025339
4.
4. M. Terrones, F. Banhart, N. Brobert, J. C. Charlier, H. Terrones, and P. M. Ayayan, “Molecular junctions by joining single-walled carbon nanotubes,” Phys. Rev. Lett. 89, 0755051 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.075505
5.
5. A. Hu, M. Rybachuk, Q.-B. Lu, and W. W. Duley, “Direct Synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91, 13190611 (2007).
http://dx.doi.org/10.1063/1.2793628
6.
6. A. Hu, J. Y. Guo, H. Alarif, G. Patane, Y. Zhou, G. Compagnini, and C. X. Xu, “Low Temperature sintering of Ag nanoparticles for flexible electronics packaging,” Appl. Phys. Lett. 97, 1531171 (2010).
http://dx.doi.org/10.1063/1.3502604
7.
7. S. J. Kim and D. J. Jang, “Laser-indiced nanowelding of gold nanoparticels,” Appl. Phys. Lett. 86, 0331121 (2005).
http://dx.doi.org/10.1063/1.1856139
8.
8. T. Gong, Y. Zhang, W. Liu, J. Wei, C. Li, K. Wang, D. Wu, and M. Zhong, “Connection of macro-sized double-walled carbon nanotubes strands by bandaging with double-walled carbon nanotube films,” Carbon 45, 22352240 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.06.029
9.
9. K. P. Yung, J. Wei, and B. K. Tay, “Formation and assembly of carbon nanotube bumps for interconnection applications,” Diamond Relat. Mater. 18, 11091113 (2009).
http://dx.doi.org/10.1016/j.diamond.2009.02.022
10.
10. L. Dong and F. Arai, “Destructive Constructions of nanostructures with carbon nanotubes through nanorobotic manipulation,” IEEE/ASME Trans. Mechatron. 9, 350357 (2004).
http://dx.doi.org/10.1109/TMECH.2004.828653
11.
11. Z. Gu, H. Ye, D. Smirnova. D. Small, and D. H. Gracias, “Reflow and electrical characteristics of nanoscale solder,” Small 2, 225229 (2006).
http://dx.doi.org/10.1002/smll.200500296
12.
12. Y. Li, K. Wang, J. Wei, Z. Gu, Q. Shu, C. Li, W. Wang, Z. Wang, J. Luo, and D. Wu, “Improving tensile properties of double-walled carbon nanotube strands by intercalation of epoxy resin,” Carbon 44, 176179 (2006).
http://dx.doi.org/10.1016/j.carbon.2005.08.011
13.
13. N. Liu, M. Hentschel, T. Weiss, A. Paul Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
http://dx.doi.org/10.1126/science.1199958
14.
14. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741745 (2005).
http://dx.doi.org/10.1038/nbt1100
15.
15. H. Alarifi, A. Hu, M. Yavuz, and Y. Zhou, “Silver nanoparticle paste for low-temperature bonding of copper,” J. Electron. Mater. 40, 13941342 (2011).
http://dx.doi.org/10.1007/s11664-011-1594-0
16.
16. E. Ide, S. Angata, A. Hirose, and K. F. Kobayashi, “Metal-metal bonding process using Ag metallo-organic nanoparticles,” Acta Mater. 53, 23852393 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.01.047
17.
17. C. Chen, Y. Lu, E. S. Kong, Y. F. Zhang, and S. T. Lee, “Nanowelded carbon-nanotube-based solar microcells,” Small 4, 13131318 (2007).
http://dx.doi.org/10.1002/smll.200701309
18.
18. C. Chen, L. J. Yan, E. S. Kong, and Y. F. Zhang, “Ultrasonic nanowelding of carbon nanotubes to metal electrodes,” Nanotechnology 17, 21922197 (2006).
http://dx.doi.org/10.1088/0957-4484/17/9/019
19.
19. W. Wu, A. Hu, X. Li, J. Wei, Q. Shu, K. Wang, M. Yavuz, and Y. Zhou, “Vacuum brazing of carbon nanotube bundles,” Mater. Lett. 62, 44864488 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.08.020
20.
20. C. O. Girit and A. Zettl, “Soldering to a single atomic layer,” Appl. Phys. Lett. 91, 1935121 (2007).
http://dx.doi.org/10.1063/1.2812571
21.
21. F. Gao, S. Mukherjee, Q. Cui, and Z. Gu, “Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegamented metal nanowires,” J. Phys. Chem. C 113, 95469552 (2009).
http://dx.doi.org/10.1021/jp8112396
22.
22. F. Mafuńe, J. Kohno, Y. Takeda, and T. Kondow, “Nanoscale soldering of metal nanoparticles for construction of higher-order structures,” J. Am. Chem. Soc. 125, 16861687 (2003).
http://dx.doi.org/10.1021/ja021250d
23.
23. Y. Zhou, A. Hu, M. I. Khan, W. Wu, B. Tam, and M. Yavuz. “Recent progress in micro and nano-joining,” J. Phys. Conf. Ser. 165, 0120121 (2009).
http://dx.doi.org/10.1088/1742-6596/165/1/012012
24.
24. H. Tohmyoh, T. Imazumi, H. Hayashi, and M. Saka, “Welding of Pt nanowires by Joule heating,” Scr. Mater. 57, 953956 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.07.018
25.
25. H. Tohmyoh and S. Fukui, “Self-completed Joule heat welding of ultrathin Pt wires,” Phys. Rev. B 80, 1554031 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.155403
26.
26. Y. Wu and P. Yang, “Melting and welding of semiconductor nanowires in nanotubes,” Adv. Mater. 13, 520523 (2001).
http://dx.doi.org/10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W
27.
27. D. H. Reitze, H. Ahn, and M. C. Downer, “Optical properties of liquid carbon measured by femtosecond spectroscopy,” Phys. Rev. B 45, 26772693 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.2677
28.
28. D. Von der Linde, K. Sokolowski-Tinten, and J. Biakowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109/110, 110 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00611-3
29.
29. A. Hu, Y. Zhou, and W. W. Duley, “Femtosecond laser-induced nanowelding: Fundamentals and applications,” Open Surf. Sci. J 3, 4249 (2011).
http://dx.doi.org/10.2174/1876531901103010042
30.
30. K. Dick, T. Dhanasekaren, Z. Zhang, and D. Meisel, “Size-dependent metling of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124, 23122317 (2002).
http://dx.doi.org/10.1021/ja017281a
31.
31. P. Peng, A. Hu, and Y. Zhou, “Laser sintering of silver nanoparticle thin films: Microstructure and optical properties,” Appl. Phys. A (to be published).
32.
32. J. G. Bai, T. G. Lei, J. N. Calata, and G. Q. Lu, “Control of nanosilver sintering attained through organic bonder burnout,” J. Mater. Res. 22, 34943500 (2007).
http://dx.doi.org/10.1557/JMR.2007.0440
33.
33. T. G. Lei, J. N. Calata, G. Q. Lu, X. Chen, and S. Luo, “Low-temperature sintering of nanoscale silver paste for attaing large-area chips,” IEEE Trans. Compon. Packag. Technol. 33, 98104 (2010).
http://dx.doi.org/10.1109/TCAPT.2009.2021256
34.
34. A. Hu, J. Sanderson, A. A. Zaidi, C. Wang, T. Zhang, Y. Zhou, and W. W. Duley, “Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation,” Carbon 46, 17921828 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.07.036
35.
35. A. Hu, S. K. Panda, M. I. Khan, and Y. Zhou, “Laser welding, microwelding, nanowelding and nanoprocessing,” Chin. J. Lasers 36, 31493159 (2009).
http://dx.doi.org/10.3788/CJL20093612.3149
36.
36. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum. Electron. 21, 155 (1997).
http://dx.doi.org/10.1016/S0079-6727(97)00002-5
37.
37. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 27162722 (1997).
http://dx.doi.org/10.1364/JOSAB.14.002716
38.
38. T. Zhang, X. Y. Zhang, X. Xue, X. Wu, C. Li, and A. Hu, “Plasmonic properties of welded metal nanoparticles,” Open Surf. Sci. J. 3, 7681 (2011).
http://dx.doi.org/10.2174/187653101003010076
39.
39. X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Nano 5, 90829092 (2011).
http://dx.doi.org/10.1021/nn203336m
40.
40. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10, 42424248 (2010).
http://dx.doi.org/10.1021/nl102725k
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.3695174
Loading
/content/lia/journal/jla/24/4/10.2351/1.3695174
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/lia/journal/jla/24/4/10.2351/1.3695174
2012-07-16
2014-08-30

Abstract

Nanojoining, a burgeoning research area, becomes a key manufacturing of complicated nanodevices with functional prefabricated components. In this work, various nanojoining methods are first reviewed. For nanojoining of Ag/Au nanoparticles, three methods are investigated comparatively. Thermal annealing shows a two-step solid state diffusion mechanism. Laser annealing by millisecond pulses displays the thermal activated solid state diffusion. Meanwhile, two effects have been identified in femtosecond laser irradiation with different laser intensities: photofragmentation at rather high intensity (∼1014 W/cm2) and nanojoining at low intensity (∼1010 W/cm2). The photofragmentation forms a large number of tiny nanoparticles with an average size of 10 nm. Control over irradiation conditions at intensities near 1010 W/cm2 results in nanojoining of most of the nanoparticles. This nanojoining is obtained through a nonthermal melting and a surface fusion welding. Joined Aunanoparticles are expected to have numerous applications, such as probes for surface enhance Raman spectroscopy.

Loading

Full text loading...

/deliver/fulltext/lia/journal/jla/24/4/1.3695174.html;jsessionid=1rvt4n4o3v4qa.x-aip-live-02?itemId=/content/lia/journal/jla/24/4/10.2351/1.3695174&mimeType=html&fmt=ahah&containerItemId=content/lia/journal/jla
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Femtosecond laser welded nanostructures and plasmonic devices
http://aip.metastore.ingenta.com/content/lia/journal/jla/24/4/10.2351/1.3695174
10.2351/1.3695174
SEARCH_EXPAND_ITEM