Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Zhou, Microjoining and Nanojoining (Woodhead Publishing Ltd, Cambridge, England, 2008).
2. Y. Lu, J. Huang, C. Wang, S. Sun, and J. Lou, “Cold welding of ultrathin gold nanowires,” Nat. Nanotechnol. 5, 218224 (2010).
3. Y. Peng, T. Cullis, and B. Inkson, “Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder,” Nano Lett. 9, 9196 (2009).
4. M. Terrones, F. Banhart, N. Brobert, J. C. Charlier, H. Terrones, and P. M. Ayayan, “Molecular junctions by joining single-walled carbon nanotubes,” Phys. Rev. Lett. 89, 0755051 (2002).
5. A. Hu, M. Rybachuk, Q.-B. Lu, and W. W. Duley, “Direct Synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation,” Appl. Phys. Lett. 91, 13190611 (2007).
6. A. Hu, J. Y. Guo, H. Alarif, G. Patane, Y. Zhou, G. Compagnini, and C. X. Xu, “Low Temperature sintering of Ag nanoparticles for flexible electronics packaging,” Appl. Phys. Lett. 97, 1531171 (2010).
7. S. J. Kim and D. J. Jang, “Laser-indiced nanowelding of gold nanoparticels,” Appl. Phys. Lett. 86, 0331121 (2005).
8. T. Gong, Y. Zhang, W. Liu, J. Wei, C. Li, K. Wang, D. Wu, and M. Zhong, “Connection of macro-sized double-walled carbon nanotubes strands by bandaging with double-walled carbon nanotube films,” Carbon 45, 22352240 (2007).
9. K. P. Yung, J. Wei, and B. K. Tay, “Formation and assembly of carbon nanotube bumps for interconnection applications,” Diamond Relat. Mater. 18, 11091113 (2009).
10. L. Dong and F. Arai, “Destructive Constructions of nanostructures with carbon nanotubes through nanorobotic manipulation,” IEEE/ASME Trans. Mechatron. 9, 350357 (2004).
11. Z. Gu, H. Ye, D. Smirnova. D. Small, and D. H. Gracias, “Reflow and electrical characteristics of nanoscale solder,” Small 2, 225229 (2006).
12. Y. Li, K. Wang, J. Wei, Z. Gu, Q. Shu, C. Li, W. Wang, Z. Wang, J. Luo, and D. Wu, “Improving tensile properties of double-walled carbon nanotube strands by intercalation of epoxy resin,” Carbon 44, 176179 (2006).
13. N. Liu, M. Hentschel, T. Weiss, A. Paul Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
14. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741745 (2005).
15. H. Alarifi, A. Hu, M. Yavuz, and Y. Zhou, “Silver nanoparticle paste for low-temperature bonding of copper,” J. Electron. Mater. 40, 13941342 (2011).
16. E. Ide, S. Angata, A. Hirose, and K. F. Kobayashi, “Metal-metal bonding process using Ag metallo-organic nanoparticles,” Acta Mater. 53, 23852393 (2005).
17. C. Chen, Y. Lu, E. S. Kong, Y. F. Zhang, and S. T. Lee, “Nanowelded carbon-nanotube-based solar microcells,” Small 4, 13131318 (2007).
18. C. Chen, L. J. Yan, E. S. Kong, and Y. F. Zhang, “Ultrasonic nanowelding of carbon nanotubes to metal electrodes,” Nanotechnology 17, 21922197 (2006).
19. W. Wu, A. Hu, X. Li, J. Wei, Q. Shu, K. Wang, M. Yavuz, and Y. Zhou, “Vacuum brazing of carbon nanotube bundles,” Mater. Lett. 62, 44864488 (2008).
20. C. O. Girit and A. Zettl, “Soldering to a single atomic layer,” Appl. Phys. Lett. 91, 1935121 (2007).
21. F. Gao, S. Mukherjee, Q. Cui, and Z. Gu, “Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegamented metal nanowires,” J. Phys. Chem. C 113, 95469552 (2009).
22. F. Mafuńe, J. Kohno, Y. Takeda, and T. Kondow, “Nanoscale soldering of metal nanoparticles for construction of higher-order structures,” J. Am. Chem. Soc. 125, 16861687 (2003).
23. Y. Zhou, A. Hu, M. I. Khan, W. Wu, B. Tam, and M. Yavuz. “Recent progress in micro and nano-joining,” J. Phys. Conf. Ser. 165, 0120121 (2009).
24. H. Tohmyoh, T. Imazumi, H. Hayashi, and M. Saka, “Welding of Pt nanowires by Joule heating,” Scr. Mater. 57, 953956 (2007).
25. H. Tohmyoh and S. Fukui, “Self-completed Joule heat welding of ultrathin Pt wires,” Phys. Rev. B 80, 1554031 (2009).
26. Y. Wu and P. Yang, “Melting and welding of semiconductor nanowires in nanotubes,” Adv. Mater. 13, 520523 (2001).<520::AID-ADMA520>3.0.CO;2-W
27. D. H. Reitze, H. Ahn, and M. C. Downer, “Optical properties of liquid carbon measured by femtosecond spectroscopy,” Phys. Rev. B 45, 26772693 (1992).
28. D. Von der Linde, K. Sokolowski-Tinten, and J. Biakowski, “Laser-solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109/110, 110 (1997).
29. A. Hu, Y. Zhou, and W. W. Duley, “Femtosecond laser-induced nanowelding: Fundamentals and applications,” Open Surf. Sci. J 3, 4249 (2011).
30. K. Dick, T. Dhanasekaren, Z. Zhang, and D. Meisel, “Size-dependent metling of silica-encapsulated gold nanoparticles,” J. Am. Chem. Soc. 124, 23122317 (2002).
31. P. Peng, A. Hu, and Y. Zhou, “Laser sintering of silver nanoparticle thin films: Microstructure and optical properties,” Appl. Phys. A (to be published).
32. J. G. Bai, T. G. Lei, J. N. Calata, and G. Q. Lu, “Control of nanosilver sintering attained through organic bonder burnout,” J. Mater. Res. 22, 34943500 (2007).
33. T. G. Lei, J. N. Calata, G. Q. Lu, X. Chen, and S. Luo, “Low-temperature sintering of nanoscale silver paste for attaing large-area chips,” IEEE Trans. Compon. Packag. Technol. 33, 98104 (2010).
34. A. Hu, J. Sanderson, A. A. Zaidi, C. Wang, T. Zhang, Y. Zhou, and W. W. Duley, “Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation,” Carbon 46, 17921828 (2008).
35. A. Hu, S. K. Panda, M. I. Khan, and Y. Zhou, “Laser welding, microwelding, nanowelding and nanoprocessing,” Chin. J. Lasers 36, 31493159 (2009).
36. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum. Electron. 21, 155 (1997).
37. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14, 27162722 (1997).
38. T. Zhang, X. Y. Zhang, X. Xue, X. Wu, C. Li, and A. Hu, “Plasmonic properties of welded metal nanoparticles,” Open Surf. Sci. J. 3, 7681 (2011).
39. X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ACS Nano 5, 90829092 (2011).
40. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, “Electrospun metal nanofiber webs as high-performance transparent electrode,” Nano Lett. 10, 42424248 (2010).

Data & Media loading...


Article metrics loading...



Nanojoining, a burgeoning research area, becomes a key manufacturing of complicated nanodevices with functional prefabricated components. In this work, various nanojoining methods are first reviewed. For nanojoining of Ag/Au nanoparticles, three methods are investigated comparatively. Thermal annealing shows a two-step solid state diffusion mechanism. Laser annealing by millisecond pulses displays the thermal activated solid state diffusion. Meanwhile, two effects have been identified in femtosecond laser irradiation with different laser intensities: photofragmentation at rather high intensity (∼1014 W/cm2) and nanojoining at low intensity (∼1010 W/cm2). The photofragmentation forms a large number of tiny nanoparticles with an average size of 10 nm. Control over irradiation conditions at intensities near 1010 W/cm2 results in nanojoining of most of the nanoparticles. This nanojoining is obtained through a nonthermal melting and a surface fusion welding. Joined Aunanoparticles are expected to have numerous applications, such as probes for surface enhance Raman spectroscopy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd