Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132134 (1997).
2. B. Cumpston, S. Ananthavel, S. Barlow, and D. Dyer, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature (London) 398, 5154 (1999).
3. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature (London) 412, 697698 (2001).
4. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301303 (2003).
5. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12, 52215228 (2004).
6. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15, 34263436 (2007).
7. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16, 846849 (2005).
8. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90, 071106 (2007).
9. T. Tanaka, H.-B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312314 (2002).
10. V. A. Soifer, L. L. Doskolovich, D. L. Golovashkin, V. S. Pavelyer, S. N. Khonina, and N. L. Kazanskiy, Methods for Computer Design of Diffractive Optical Elements, 1st ed., edited by V. A. Soifer (Wiley, New York, 2001), p. 784.
11. V. P. Korolkov, R. K. Nasyrov, and R. V. Shimansky, “Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements,” Appl. Opt. 45, 5362 (2006).
12. L. Szikszai, P. Jaschinsky, K. Keil, M. Hauptmann, M. Mört, U. Seifert, C. Hohle, K.-H. Choi, F. Thrum, J. Kretz, V. Ferreras Paz, and A. den Boef, “Fabrication of metrology test structures for future technology nodes using high-resolution variable-shaped e-beam direct write,” Proc. SPIE 7271, 72712M172712M10 (2009).
13. W. Osten, V. Ferreras Paz, K. Frenner, T. Schuster, and H. Bloess, “Simulations of Scatterometry down to 22 nm structure sizes and beyond with special emphasis on LER,” AIP Conf. Proc. 1173, 371378 (2009).
14. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 22572262 (2008).
15.Femtosource XL, Femtolasers Productions GmbH.
16.Zeiss, Plan Apochromat, N.A. = 1.40.
17. M. Emons, A. Steinmann, T. Binhammer, G. Palmer, M. Schultze, and U. Morgner, “Sub-10-fs pulses from a MHz-NOPA with pulse energies of 0.4 μJ,” Opt. Express 18, pp. 11911196 (2010).
18. H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Quantum 170, 169274 (2004).
19. G. Palmer, M. Emons, M. Siegel, A. Steinmann, M. Schultze, M. Lederer, and U. Morgner, “Passively mode-locked and cavity-dumped Yb:KY(WO4)2 oscillator with positive dispersion,” Opt. Express 15, pp. 1601716021 (2007).
20. A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, “Generation of 9-μJ 420-fs pulses by fiber-based amplification of a cavity-dumped Yb:KYW laser oscillator,” Laser Phys. 18, 527529 (2008).
21. C. J. Raymond, “Scatterometry for semiconductor metrology,” in Handbook of Silicon Semiconductor Metrology, edited by A. C. Diebold (CRC Press, Boca Raton, 2001) pp. 477513.
22. C. J. Raymond, “Overview of Scatterometry applications in high volume silicon manufacturing,” AIP Conf. Proc. 788, 394402 (2005).
23. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Jena) 112, 399406 (2001).
24. V. Ferreras Paz, S. Peterhansel, K. Frenner, W. Osten, A. Ovsianikov, K. Obata, and B. Chichkov, “Depth sensitive Fourier-Scatterometry for the characterization of sub-100 nm periodic structures,” Proc. SPIE 8083, 80830M180830M9 (2011).
25. O. Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, “Performance analysis of coherent optical scatterometry,” Appl. Phys. B 105, 775781 (2011).
26. P. de Groot, X. C. de Lega, and J. Liesener, “Model-based white light interference microscopy for metrology of transparent film stacks and optically unresolved structures,” in Fringe 2009: 6th International Workshop on Advanced Optical Metrology, edited by W. Osten (Springer-Verlag, Berlin, 2009), pp. 236243.
27. V. Ferreras Paz, S. Peterhänsel, K. Frenner, W. Osten, A. Ovsianikov, K. Obata, and B. Chichkov, “Fourier-Scatterometrie zur Charakterisierung von sub-Wellenlängen Zwei-Photonen-Polymerisations-strukturierten Kreuzgittern,” in DGaO-Proceedings (2011).
28. C. J. Raymond, “Comparison of solutions to the Scatterometry inverse problem,” Proc. SPIE, 5375, 564575 (2004).

Data & Media loading...


Article metrics loading...



Investigations of two-photon polymerization (TPP) with sub-100 nm in the structuring resolution are presented by using photosensitive sol-gel material. The high photosensitivity of this material allows for TPP using a large variety in laser pulse durations covering a range between sub-10 fs and ≈140 fs. In this study, the authors demonstrate TPP structuring to obtain sub-100 nm in resolution by different approaches, namely, by adding a cross-linker to the material and polymerization with sub-10 fs short pulses. Additionally, a simulation and model based characterization method for periodic sub-100 nm structures was implemented and applied in an experimental white light interference Fourier-Scatterometry setup.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd